// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/distributed/ps/table/sparse_geo_table.h" namespace paddle { namespace distributed { int32_t SparseGeoTable::pull_geo_param(const uint32_t trainer_id, std::vector* values, std::vector* ids) { geo_recorder->GetAndClear(trainer_id, ids); auto dim = _config.common().dims()[0]; std::vector frequencies; frequencies.resize(ids->size(), 1); auto pull_value = PullSparseValue(ids->size(), dim); pull_value.is_training_ = true; pull_value.feasigns_ = ids->data(); pull_value.frequencies_ = frequencies.data(); values->resize(ids->size() * dim); CommonSparseTable::pull_sparse(values->data(), pull_value); return 0; } int32_t SparseGeoTable::push_sparse(const uint64_t* keys, const float* values, size_t num) { std::vector ids; ids.resize(num); std::copy_n(keys, num, ids.begin()); geo_recorder->Update(ids); CommonSparseTable::push_sparse(keys, values, num); return 0; } int32_t SparseGeoTable::initialize_value() { auto common = _config.common(); shard_values_.reserve(task_pool_size_); for (int x = 0; x < task_pool_size_; ++x) { auto shard = std::make_shared( value_names_, value_dims_, value_offsets_, value_idx_, initializer_attrs_, common.entry()); shard_values_.emplace_back(shard); } auto accessor = _config.accessor(); std::vector feasigns; for (size_t x = 0; x < accessor.fea_dim(); ++x) { if (x % _shard_num == _shard_idx) { feasigns.push_back(x); } } VLOG(3) << "has " << feasigns.size() << " ids need to be pre inited"; auto buckets = bucket(feasigns.size(), 10); for (int x = 0; x < 10; ++x) { auto bucket_feasigns = buckets[x + 1] - buckets[x]; std::vector ids(bucket_feasigns); std::copy(feasigns.begin() + buckets[x], feasigns.begin() + buckets[x + 1], ids.begin()); std::vector fres; fres.resize(ids.size(), 1); auto pull_value = PullSparseValue(ids, fres, param_dim_); std::vector pulls; pulls.resize(bucket_feasigns * param_dim_); pull_sparse(pulls.data(), pull_value); } return 0; } } // namespace distributed } // namespace paddle