// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/isfinite_v2_op.h" #include #include "paddle/fluid/operators/common_infer_shape_functions.h" namespace paddle { namespace framework { class InferShapeContext; class OpDesc; template class EmptyGradOpMaker; } // namespace framework namespace imperative { class OpBase; } // namespace imperative namespace operators { template class OverflowKernel; } // namespace operators namespace platform { class CPUDeviceContext; } // namespace platform } // namespace paddle namespace plat = paddle::platform; namespace paddle { namespace operators { class OverflowV2Op : public framework::OperatorWithKernel { public: OverflowV2Op(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext *ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "isfinitev2"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "isfinitev2"); UnaryOpUnchangedInferShape(ctx); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { int dtype = -1; auto *x_var = ctx.InputVar("X"); if (x_var->IsType()) { dtype = x_var->Get().type(); } else if (x_var->IsType()) { dtype = x_var->Get().value().type(); } else { PADDLE_THROW(plat::errors::InvalidArgument( "Cannot find the input data type by all input data")); } return framework::OpKernelType(framework::proto::VarType::Type(dtype), ctx.GetPlace()); } }; class OverflowV2OpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) The input tensors of overflowv2 operator."); AddOutput("Out", "(Tensor) The output tensor of overflowv2 operator. " "Same size compare to input tensor"); AddComment(string::Sprintf(R"DOC( Overflow %s operator. $$Out = any(X)$$ Check whether each element of X is Inf or Nan, return the bool result of each element of X as a tensor. %s )DOC", GetName(), GetComments())); } protected: virtual std::string GetName() const = 0; virtual std::string GetComments() const = 0; }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; #define REGISTER_V2OP_MAKER(op_type, comment) \ namespace paddle { \ namespace operators { \ class _##op_type##OverflowV2OpMaker \ : public ::paddle::operators::OverflowV2OpMaker { \ protected: \ std::string GetName() const { return #op_type; } \ std::string GetComments() const { return comment; } \ }; \ } \ } \ REGISTER_OPERATOR( \ op_type, ops::OverflowV2Op, ops::_##op_type##OverflowV2OpMaker, \ paddle::framework::EmptyGradOpMaker, \ paddle::framework::EmptyGradOpMaker) #define REGISTER_OVERFLOW_CPU_KERNEL(op_type, functor) \ REGISTER_OP_CPU_KERNEL( \ op_type, ops::OverflowKernel, \ ops::OverflowKernel, \ ops::OverflowKernel, \ ops::OverflowKernel, \ ops::OverflowKernel); REGISTER_V2OP_MAKER(isinf_v2, "isinfv2(X)"); REGISTER_V2OP_MAKER(isnan_v2, "isnanv2(X)"); REGISTER_V2OP_MAKER(isfinite_v2, "isfinitev2(X)"); REGISTER_OVERFLOW_CPU_KERNEL(isinf_v2, InfinityV2Functor); REGISTER_OVERFLOW_CPU_KERNEL(isnan_v2, NANV2Functor); REGISTER_OVERFLOW_CPU_KERNEL(isfinite_v2, IsfiniteV2Functor);