# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from op_test import OpTest def collect_node_patch(og, max_depth): """ The naive method to construct patches :param og: original graph :param max_depth: the depth of convolution filters :return: convolution patches """ def gen(node, max_depth): collected = [(node, 1, 1, 0, max_depth)] def recurse_helper(node, depth): if depth > max_depth: return l = len(og[node]) for idx, c in enumerate(og[node], 1): if depth + 1 < max_depth: collected.append((c, idx, l, depth + 1, max_depth)) recurse_helper(c, depth + 1) recurse_helper(node, 0) return collected res = [] for u in range(1, len(og)): lis = gen(u, max_depth) if len(lis) > 0: res.append(lis) return res class TestTreeConvOp(OpTest): def setUp(self): self.n = 17 self.fea_size = 3 self.output_size = 1 self.max_depth = 2 self.batch_size = 1 self.num_filters = 1 adj_array = [ 1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10, 5, 11, 6, 12, 6, 13, 9, 14, 9, 15, 9, 16, 9, 17 ] adj = np.array(adj_array).reshape((1, self.n - 1, 2)).astype('int32') adj = np.tile(adj, (self.batch_size, 1, 1)) self.op_type = 'tree_conv' vectors = np.random.random( (self.batch_size, self.n, self.fea_size)).astype('float32') self.inputs = { 'EdgeSet': adj, 'NodesVector': vectors, 'Filter': np.random.random((self.fea_size, 3, self.output_size, self.num_filters)).astype('float32') } self.attrs = {'max_depth': self.max_depth} vectors = [] for i in range(self.batch_size): vector = self.get_output_naive(i) vectors.append(vector) self.outputs = {'Out': np.array(vectors).astype('float32'), } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad( ['NodesVector', 'Filter'], 'Out', max_relative_error=0.5) def get_output_naive(self, batch_id): og = [[] for i in range(1, self.n + 2)] st = np.array(self.inputs['EdgeSet'][batch_id]).tolist() for e in st: og[e[0]].append(e[1]) patches = collect_node_patch(og, self.max_depth) W = np.array(self.inputs['Filter']).astype('float32') W = np.transpose(W, axes=[1, 0, 2, 3]) vec = [] for i, patch in enumerate(patches, 1): result = np.zeros((1, W.shape[2], W.shape[3])) for v in patch: eta_t = float(v[4] - v[3]) / float(v[4]) eta_l = (1.0 - eta_t) * (0.5 if v[2] == 1 else float(v[1] - 1.0) / float(v[2] - 1.0)) eta_r = (1.0 - eta_t) * (1.0 - eta_l) x = self.inputs['NodesVector'][batch_id][v[0] - 1] eta = np.array([eta_l, eta_r, eta_t]).reshape( (3, 1)).astype('float32') Wconvi = np.tensordot(eta, W, axes=([0], [0])) x = np.array(x).reshape((1, 1, self.fea_size)) res = np.tensordot(x, Wconvi, axes=2) result = result + res vec.append(result) vec = np.concatenate(vec, axis=0) vec = np.concatenate( [ vec, np.zeros( (self.n - vec.shape[0], W.shape[2], W.shape[3]), dtype='float32') ], axis=0) return vec