# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from __future__ import print_function from __future__ import division import paddle.fluid as fluid from paddle.fluid import core, unique_name from ..base.private_helper_function import wait_server_ready from paddle.fluid.optimizer import PipelineOptimizer as PO from .meta_optimizer_base import MetaOptimizerBase from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_loss_grad_op, is_backward_op, is_optimizer_op class PipelineOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(PipelineOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.meta_optimizers_white_list = [ "RecomputeOptimizer", "AMPOptimizer", ] self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ] self.global_ring_id = 1 self.dp_ring_id = 2 self.start_pipeline_ring_id = 20 # Just a magic number def _set_basic_info(self, loss, role_maker, user_defined_optimizer, user_defined_strategy): super(PipelineOptimizer, self)._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy) self.micro_batch_size = user_defined_strategy.pipeline_configs[ 'micro_batch_size'] self.num_microbatches = user_defined_strategy.pipeline_configs[ 'accumulate_steps'] self.schedule_mode = user_defined_strategy.pipeline_configs[ 'schedule_mode'] self.use_sharding = user_defined_strategy.sharding def _can_apply(self): if not self.role_maker._is_collective: return False # FIXME revise for hybrid parallelism if self.use_sharding: return False if self.user_defined_strategy.pipeline == True: return True return False def _disable_strategy(self, dist_strategy): dist_strategy.pipeline = False dist_strategy.pipeline_configs = { "micro_batch_size": 1, "accumulate_steps": 1, "schedule_mode": "1F1B", } def _enable_strategy(self, dist_strategy, context): dist_strategy.pipeline = True dist_strategy.pipeline_configs = { "micro_batch_size": 1, "accumulate_steps": 1, "schedule_mode": "1F1B", } def _broadcast_params(self, ring_id): block = self.startup_program.global_block() param = None for param in block.iter_parameters(): if param.is_distributed: continue block.append_op( type='c_broadcast', inputs={'X': param}, outputs={'Out': param}, attrs={ 'ring_id': ring_id, 'root': 0, OP_ROLE_KEY: OpRole.Forward }) if not param: return # no parameter on this device block.append_op( type='c_sync_comm_stream', inputs={'X': param}, outputs={'Out': param}, attrs={'ring_id': ring_id, OP_ROLE_KEY: OpRole.Forward}) def _get_process_group_info(self): # global ring info self.global_endpoints = self.endpoints self.global_rank = self.rank self.global_nranks = self.nranks # data parallel ring info if self.pipeline_num > 1: self.dp_rank = self.rank // self.inner_parallelism self.dp_nranks = self.nranks // self.inner_parallelism start_index = self.rank % self.inner_parallelism self.dp_endpoints = [ self.endpoints[start_index + i * self.inner_parallelism] for i in range(self.pipeline_num) ] def _init_process_group(self, pipeline_pair, pipeline_ring_map): self._get_process_group_info() collective_helper = CollectiveHelper(self.role_maker, wait_port=False) # Create global ring for all gpus (ring_id = 0) collective_helper._init_communicator( self.startup_program, self.current_endpoint, self.global_endpoints, self.global_rank, self.global_ring_id, True, self.global_ring_id, True) # Create pipeline rings if self.inner_parallelism > 1: pipeline_id = self.rank // self.inner_parallelism start_index = pipeline_id * self.inner_parallelism for pair in pipeline_pair: pair_key = pair[0] * 1000 + pair[1] ring_id = pipeline_ring_map[pair_key] assert ring_id >= self.start_pipeline_ring_id first_node = pair[0] + start_index second_node = pair[1] + start_index if self.rank != first_node and self.rank != second_node: continue pipeline_endpoints = [ self.endpoints[first_node], self.endpoints[second_node] ] pipeline_rank = 0 if self.rank == first_node else 1 pipeline_nranks = 2 collective_helper._init_communicator( self.startup_program, self.current_endpoint, pipeline_endpoints, pipeline_rank, ring_id, False, self.global_ring_id, True) # Create dp rings if self.pipeline_num > 1: collective_helper._init_communicator( self.startup_program, self.current_endpoint, self.dp_endpoints, self.dp_rank, self.dp_ring_id, True, self.global_ring_id, True) self._broadcast_params(self.dp_ring_id) def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): self.endpoints = self.role_maker._get_trainer_endpoints() self.current_endpoint = self.endpoints[self.role_maker._worker_index()] self.rank = self.role_maker._worker_index() self.nranks = self.role_maker._worker_num() self.wrapped_opt = PO(self.inner_opt, num_microbatches=self.num_microbatches) orig_startup_program = startup_program if startup_program else fluid.default_startup_program( ) block = loss.block program = block.program program._pipeline_opt = dict() program._pipeline_opt['local_rank'] = self.rank program._pipeline_opt['global_ring_id'] = self.global_ring_id program._pipeline_opt['ring_id'] = self.start_pipeline_ring_id program._pipeline_opt['micro_batch_size'] = self.micro_batch_size program._pipeline_opt['schedule_mode'] = self.schedule_mode program._pipeline_opt['use_sharding'] = False optimize_ops, params_grads, prog_list, pp_pair, ring_map = self.wrapped_opt.minimize( loss, startup_program, parameter_list, no_grad_set) self.startup_program = orig_startup_program._pipeline_opt[ 'startup_program'] self.inner_parallelism = program._pipeline_opt['inner_parallelism'] assert self.nranks % self.inner_parallelism == 0 assert prog_list self.pipeline_num = len(self.endpoints) // self.inner_parallelism self._init_process_group(pp_pair, ring_map) self.main_program_list = prog_list self.main_program = program if self.pipeline_num > 1: self._transpile_main_program(loss) return optimize_ops, params_grads def _transpile_main_program(self, loss): self._insert_loss_grad_ops(loss, self.pipeline_num) self._insert_allreduce_ops(self.dp_ring_id) def _insert_loss_grad_ops(self, loss, pipeline_num): """ In order to keep the learning rate consistent in different numbers of training workers, we scale the loss grad by the number of workers """ block = self.main_program_list[-1].global_block() for idx, op in reversed(list(enumerate(block.ops))): if is_loss_grad_op(op): loss_grad_var = block.vars[op.output_arg_names[0]] block._insert_op( idx + 1, type='scale', inputs={'X': loss_grad_var}, outputs={'Out': loss_grad_var}, attrs={ 'scale': 1.0 / pipeline_num, OP_ROLE_KEY: OpRole.Backward }) def _insert_allreduce_ops(self, ring_id): block = self.main_program._pipeline_opt['section_program'].global_block( ) origin_block = self.main_program.global_block() grad = None processed_param_name = set() first_optimize_op_idx = None for idx, op in reversed(list(enumerate(block.ops))): if is_backward_op(op) and not first_optimize_op_idx: first_optimize_op_idx = idx + 1 # no optimize phase if first_optimize_op_idx == len(block.ops): return if is_backward_op(op) and \ OP_ROLE_VAR_KEY in op.attr_names: op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY] if len(op_role_var) == 0: continue assert len(op_role_var) % 2 == 0 offset = 0 for i in range(0, len(op_role_var), 2): param_name = op_role_var[i] param = block.vars[op_role_var[i]] if param_name in processed_param_name: continue processed_param_name.add(param_name) grad_name = op_role_var[i + 1] if not 'MERGED' in grad_name: grad_name += '@MERGED' grad = block.vars[grad_name] origin_param = origin_block.vars[op_role_var[i]] if origin_param.is_distributed: continue block._insert_op( first_optimize_op_idx + offset, type='c_allreduce_sum', inputs={'X': grad}, outputs={'Out': grad}, attrs={ 'ring_id': ring_id, 'use_calc_stream': True, OP_ROLE_KEY: OpRole.Optimize })