/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/pten/api/include/linalg.h" #include #include "glog/logging.h" #include "paddle/pten/api/lib/api_registry.h" #include "paddle/pten/api/lib/kernel_dispatch.h" #include "paddle/pten/api/lib/utils/allocator.h" #include "paddle/pten/core/convert_utils.h" #include "paddle/pten/core/dense_tensor.h" #include "paddle/pten/core/kernel_context.h" #include "paddle/pten/core/kernel_registry.h" #include "paddle/pten/include/core.h" #include "paddle/pten/include/infershape.h" PT_DECLARE_MODULE(LinalgCPU); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PT_DECLARE_MODULE(LinalgCUDA); #endif namespace paddle { namespace experimental { PD_DLL_DECL Tensor dot(const Tensor& x, const Tensor& y) { // 1. Get kernel signature and kernel auto kernel_key_set = ParseKernelKeyByInputArgs(x); auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError( "dot", kernel_key); // 2. Get Device Context auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend()); auto kernel_context = pten::KernelContext(dev_ctx); // 3. Auto data transform auto dense_x = std::dynamic_pointer_cast(x.impl()); kernel_context.EmplaceBackInput(dense_x); auto dense_y = std::dynamic_pointer_cast(y.impl()); kernel_context.EmplaceBackInput(dense_y); // TODO(chenweihang): add transform impl // 4. InferMeta auto out_meta = DotInferMeta(dense_x->meta(), dense_y->meta()); // 5. Prepare outputs Tensor out; const auto allocator = std::make_shared( pten::TransToFluidPlace(kernel_key.backend())); auto dense_out = std::make_shared(allocator, out_meta); kernel_context.EmplaceBackOutput(dense_out); out.set_impl(dense_out); // 6. Call kernel kernel(&kernel_context); return out; } PD_DLL_DECL Tensor matmul(const Tensor& x, const Tensor& y, bool transpose_x, bool transpose_y) { // 1. Get kernel signature and kernel auto kernel_key_set = ParseKernelKeyByInputArgs(x, y); auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError( "matmul_v2", kernel_key); // 2. Get Device Context auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend()); auto kernel_context = pten::KernelContext(dev_ctx); // 3. Auto data transform auto dense_x = std::dynamic_pointer_cast(x.impl()); auto dense_y = std::dynamic_pointer_cast(y.impl()); kernel_context.EmplaceBackInput(dense_x); kernel_context.EmplaceBackInput(dense_y); kernel_context.EmplaceBackAttr(transpose_x); kernel_context.EmplaceBackAttr(transpose_y); // TODO(chenweihang): add transform impl // 4. InferMeta auto out_meta = MatmulInferMeta( dense_x->meta(), dense_y->meta(), transpose_x, transpose_y); // 5. Prepare outputs const auto allocator = std::make_shared( pten::TransToFluidPlace(kernel_key.backend())); auto dense_out = std::make_shared(allocator, out_meta); kernel_context.EmplaceBackOutput(dense_out); Tensor out; out.set_impl(dense_out); // 6. Call kernel kernel(&kernel_context); return out; } } // namespace experimental } // namespace paddle PT_REGISTER_API(Linalg);