# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import unittest import os import six import numpy as np import shutil import copy import paddle from paddle import fluid from paddle.incubate.hapi.model import Model, Input from paddle.incubate.hapi.loss import CrossEntropy, SoftmaxWithCrossEntropy def stable_softmax(x): """Compute the softmax of vector x in a numerically stable way.""" # clip to shiftx, otherwise, when calc loss with # log(exp(shiftx)), may get log(0)=INF shiftx = (x - np.max(x)).clip(-64.) exps = np.exp(shiftx) return exps / np.sum(exps) def randomize_probability(batch_size, class_num, dtype='float32'): prob = np.random.uniform( 0.1, 1.0, size=(batch_size, class_num)).astype(dtype) prob_sum = prob.sum(axis=1) for i in six.moves.xrange(len(prob)): prob[i] /= prob_sum[i] return prob def numpy_ce(x, label): return np.asmatrix( [[-np.log(x[i][label[i][0]])] for i in range(x.shape[0])], dtype="float32").mean() class TestLoss(unittest.TestCase): def test_cross_entropy(self): class_num = 100 batch_size = 128 inputs = [randomize_probability(128, class_num) for _ in range(2)] labels = [ np.random.randint( 0, class_num, (batch_size, 1), dtype="int64") for _ in range(2) ] gt_out = [numpy_ce(inputs[i], labels[i]) for i in range(2)] fluid.enable_dygraph() cross_entropy = CrossEntropy() out = cross_entropy( [fluid.dygraph.to_variable(x) for x in inputs], [fluid.dygraph.to_variable(label) for label in labels]) out = [o.numpy() for o in out] for o, g in zip(out, gt_out): np.testing.assert_allclose(o, g, atol=1e-5) def test_soft_cross_entronpy(self): class_num = 100 batch_size = 128 inputs = [randomize_probability(128, class_num) for _ in range(2)] labels = [ np.random.randint( 0, class_num, (batch_size, 1), dtype="int64") for _ in range(2) ] fluid.enable_dygraph() softmax_cross_entropy = SoftmaxWithCrossEntropy() softmax_cross_entropy( [fluid.dygraph.to_variable(x) for x in inputs], [fluid.dygraph.to_variable(label) for label in labels]) softmax_cross_entropy = SoftmaxWithCrossEntropy(average=False) inputs = [randomize_probability(128, class_num)] labels = [ np.random.randint( 0, class_num, (batch_size, 1), dtype="int64") ] softmax_cross_entropy([fluid.dygraph.to_variable(x) for x in inputs], fluid.dygraph.to_variable(labels[0])) if __name__ == '__main__': unittest.main()