// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/kernels/abs_grad_kernel.h" #include "paddle/phi/kernels/funcs/complex_functors.h" #include "paddle/phi/kernels/funcs/elementwise_base.h" #include "paddle/phi/kernels/funcs/for_range.h" namespace phi { #if defined(__NVCC__) template struct AbsGradCUDAFunctor { HOSTDEVICE inline AbsGradCUDAFunctor() {} HOSTDEVICE inline T operator()(const T x, const T dout) const { T output; if (x == T(0)) { output = T(0); } else { output = T(dout) * (x / T(std::abs(x))); } return output; } }; template <> struct AbsGradCUDAFunctor { HOSTDEVICE inline AbsGradCUDAFunctor() {} HOSTDEVICE inline phi::dtype::bfloat16 operator()( const phi::dtype::bfloat16 x, const phi::dtype::bfloat16 dout) const { phi::dtype::bfloat16 output; if (x == phi::dtype::bfloat16(0)) { output = static_cast(0); } else { output = (dout) * (x / abs(x)); } return output; } }; template <> struct AbsGradCUDAFunctor> { HOSTDEVICE inline AbsGradCUDAFunctor() {} HOSTDEVICE inline phi::dtype::complex operator()( const phi::dtype::complex x, const float dout) const { phi::dtype::complex output; if (x == phi::dtype::complex(0)) { output = phi::dtype::complex(0); } else { output = phi::dtype::complex(dout) * (x / phi::dtype::complex(abs(x))); } return output; } }; template <> struct AbsGradCUDAFunctor> { HOSTDEVICE inline AbsGradCUDAFunctor() {} HOSTDEVICE inline phi::dtype::complex operator()( const phi::dtype::complex x, const double dout) const { phi::dtype::complex output; if (x == phi::dtype::complex(0)) { output = phi::dtype::complex(0); } else { output = phi::dtype::complex(dout) * (x / phi::dtype::complex(abs(x))); } return output; } }; template void AbsGradKernelImpl(const GPUContext& dev_ctx, const DenseTensor& x, const DenseTensor& dout, DenseTensor* dx) { std::vector ins = {&x, &dout}; std::vector outs = {dx}; dev_ctx.Alloc(dx); AbsGradCUDAFunctor abs_grad_cuda_functor; phi::funcs::ElementwiseKernel(dev_ctx, ins, &outs, abs_grad_cuda_functor); } template void AbsGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& dout, DenseTensor* dx) { AbsGradKernelImpl(dev_ctx, x, dout, dx); } #else template void AbsGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& dout, DenseTensor* dx) { auto numel = dout.numel(); auto* dout_data = dout.data>(); auto* x_data = x.data(); ctx.template Alloc(dx, static_cast(numel * sizeof(T))); auto* dx_data = dx->data(); phi::funcs::ForRange for_range(ctx, numel); phi::funcs::AbsGradFunctor functor(dout_data, x_data, dx_data, numel); for_range(functor); } #endif template void AbsDoubleGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& ddx, DenseTensor* ddout) { auto numel = ddx.numel(); auto* ddx_data = ddx.data(); auto* x_data = x.data(); ctx.template Alloc(ddout, static_cast(numel * sizeof(T))); auto* ddout_data = ddout->data(); phi::funcs::ForRange for_range(ctx, numel); phi::funcs::AbsGradGradFunctor functor( ddx_data, x_data, ddout_data, numel); for_range(functor); } } // namespace phi