// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/mode_grad_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/mode.h" namespace phi { template void ModeGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& indices, const DenseTensor& out_grad, int axis, bool keepdim, DenseTensor* x_grad) { auto in_dims = x.dims(); auto out_dims = indices.dims(); T* x_grad_data = dev_ctx.template Alloc(x_grad); // axis < 0, get the real axis axis = (axis < 0) ? (in_dims.size() + axis) : axis; // For 0D Tensor if (in_dims.size() == 0) { phi::funcs::set_constant(dev_ctx, x_grad, 1.0); return; } if (!keepdim) { std::vector tmp_out_shape; for (int i = 0; i < axis; i++) { tmp_out_shape.emplace_back(out_dims[i]); } tmp_out_shape.emplace_back(1); for (int i = axis + 1; i < in_dims.size(); i++) { tmp_out_shape.emplace_back(out_dims[i - 1]); } out_dims = phi::make_ddim(tmp_out_shape); } if (axis == in_dims.size() - 1) { // allocate the memory for the input_grad // assign the out_grad to input_grad directly const int64_t input_height = phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1)); const int64_t input_width = in_dims[in_dims.size() - 1]; // init the output grad with 0, because some input elements has no grad memset(x_grad_data, 0, x_grad->numel() * sizeof(T)); // Assign the output_grad to input_grad if (keepdim) { funcs::ModeAssign(input_height, input_width, in_dims.size(), &out_grad, &indices, x_grad_data); } else { DenseTensor out_grad_tmp; dev_ctx.template Alloc(&out_grad_tmp); DenseTensor indices_tmp; dev_ctx.template Alloc(&indices_tmp); phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, &out_grad_tmp); phi::Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &indices_tmp); out_grad_tmp.Resize(out_dims); indices_tmp.Resize(out_dims); funcs::ModeAssign(input_height, input_width, in_dims.size(), &out_grad_tmp, &indices_tmp, x_grad_data); } } else { // can not assign grad to input_grad, must do the transpose std::vector trans_axis; for (int i = 0; i < axis; i++) { trans_axis.emplace_back(i); } trans_axis.emplace_back(out_dims.size() - 1); for (int i = axis + 1; i < out_dims.size() - 1; i++) { trans_axis.emplace_back(i); } trans_axis.emplace_back(axis); DDim trans_shape(out_dims); DDim trans_in_shape(in_dims); for (size_t i = 0; i < trans_axis.size(); i++) { trans_shape[i] = out_dims[trans_axis[i]]; trans_in_shape[i] = in_dims[trans_axis[i]]; } // transpose the out_grad, indices DenseTensor trans_dO; trans_dO.Resize(trans_shape); dev_ctx.template Alloc(&trans_dO); DenseTensor trans_ind; trans_ind.Resize(trans_shape); dev_ctx.template Alloc(&trans_ind); int ndims = trans_axis.size(); if (keepdim) { // Do transpose funcs::TransCompute( ndims, dev_ctx, out_grad, &trans_dO, trans_axis); funcs::TransCompute( ndims, dev_ctx, indices, &trans_ind, trans_axis); } else { DenseTensor out_grad_tmp; dev_ctx.template Alloc(&out_grad_tmp); DenseTensor indices_tmp; dev_ctx.template Alloc(&indices_tmp); phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, &out_grad_tmp); phi::Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &indices_tmp); out_grad_tmp.Resize(out_dims); indices_tmp.Resize(out_dims); // Do transpose funcs::TransCompute( ndims, dev_ctx, out_grad_tmp, &trans_dO, trans_axis); funcs::TransCompute( ndims, dev_ctx, indices_tmp, &trans_ind, trans_axis); } const int64_t input_height = phi::product( phi::slice_ddim(trans_in_shape, 0, trans_in_shape.size() - 1)); const int64_t input_width = trans_in_shape[trans_in_shape.size() - 1]; // Assign the out_grad to tranpose input_grad DenseTensor tmp_out; tmp_out.Resize(trans_in_shape); T* t_out = dev_ctx.template Alloc(&tmp_out); memset(t_out, 0, x_grad->numel() * sizeof(T)); funcs::ModeAssign(input_height, input_width, in_dims.size(), &trans_dO, &trans_ind, t_out); // Transpose back funcs::TransCompute( ndims, dev_ctx, tmp_out, x_grad, trans_axis); } } } // namespace phi PD_REGISTER_KERNEL(mode_grad, CPU, ALL_LAYOUT, phi::ModeGradKernel, float, double, int32_t, int64_t) {}