/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/memcpy_d2h_op.h" #include namespace paddle { namespace framework { class OpDesc; class InferShapeContext; template class EmptyGradOpMaker; } // namespace framework namespace imperative { class OpBase; } // namespace imperative namespace platform { struct CPUPlace; struct CUDAPlace; struct float16; } // namespace platform } // namespace paddle namespace paddle { namespace operators { class MemcpyD2HOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { auto type = ctx->GetInputsVarType("X")[0]; if (type == framework::proto::VarType::SELECTED_ROWS || type == framework::proto::VarType::LOD_TENSOR) { ctx->SetOutputDim("Out", ctx->GetInputDim("X")); if (type == framework::proto::VarType::LOD_TENSOR) { ctx->ShareLoD("X", /*->*/ "Out"); } } } protected: framework::OpKernelType GetKernelTypeForVar( const std::string &var_name, const framework::Tensor &tensor, const framework::OpKernelType &expected_kernel_type) const override { return framework::OpKernelType(expected_kernel_type.data_type_, expected_kernel_type.place_, tensor.layout()); } framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context()); } }; class MemcpyD2HInferVarType : public framework::VarTypeInference { public: void operator()(framework::InferVarTypeContext *ctx) const override { ctx->SyncTypeAndDataType("X", "Out"); } }; class MemcpyD2HKernel { public: void operator()(const framework::ExecutionContext &ctx) const { auto *x = ctx.InputVar("X"); if (x == nullptr) { return; } PADDLE_ENFORCE_EQ(ctx.HasOutput("Out"), true, platform::errors::NotFound( "Output(Out) of memcpy_d2h_op is not found.")); auto *out = ctx.OutputVar("Out"); // Get dev_ctx from ExecutionContext, it's D2H stream auto &dev_ctx = ctx.device_context(); auto dst_place_type = ctx.Attr("dst_place_type"); framework::VisitVarType(*x, MemcpyD2HFunctor(out, dev_ctx, dst_place_type)); } }; class MemcpyD2HOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(LoDTensor) The input variable "); AddOutput("Out", "(LoDTensor) The type of output " "is the same as input X."); AddAttr( "dst_place_type", "Determine the dst place of tensor copy. " "By Now it ONLY support NPUPlace/CUDAPlace <-> CUDAPinnedPlace/CPU" "Other place type is Unimplemented and will cause ERROR." "0: dst is on CPUPlace. " "1: dst is on CUDAPinnedPlace. "); AddComment(R"DOC( MemcpyD2H Operator. By now, it ONLY supports the memcopy between NPUPlace/CUDAPlace <-> CUDAPinnedPlace/CPU. You would have to update it if you want other more capacities. Out = X, when type in [LoDTensor] raise error if the type is not listed above. )DOC"); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OPERATOR( memcpy_d2h, ops::MemcpyD2HOp, ops::MemcpyD2HOpProtoMaker, ops::MemcpyD2HInferVarType, paddle::framework::EmptyGradOpMaker, paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL_FUNCTOR(memcpy_d2h, float, ops::MemcpyD2HKernel, double, ops::MemcpyD2HKernel, int, ops::MemcpyD2HKernel, int64_t, ops::MemcpyD2HKernel, bool, ops::MemcpyD2HKernel, plat::float16, ops::MemcpyD2HKernel); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) REGISTER_OP_CUDA_KERNEL_FUNCTOR(memcpy_d2h, float, ops::MemcpyD2HKernel, double, ops::MemcpyD2HKernel, int, ops::MemcpyD2HKernel, int64_t, ops::MemcpyD2HKernel, bool, ops::MemcpyD2HKernel, plat::float16, ops::MemcpyD2HKernel); #endif #ifdef PADDLE_WITH_ASCEND_CL REGISTER_OP_NPU_KERNEL_FUNCTOR(memcpy_d2h, float, ops::MemcpyD2HKernel, double, ops::MemcpyD2HKernel, int, ops::MemcpyD2HKernel, int64_t, ops::MemcpyD2HKernel, bool, ops::MemcpyD2HKernel, plat::float16, ops::MemcpyD2HKernel); #endif