// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/core/enforce.h" #include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/infermeta/backward.h" #include "paddle/phi/infermeta/unary.h" namespace paddle { namespace operators { class FrameOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { const auto in_dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(in_dtype, ctx.GetPlace()); } }; class FrameOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of frame op."); AddOutput("Out", "(Tensor), The output tensor of frame op."); AddAttr( "frame_length", "Length of the frame and `0 < frame_length <= x.shape[axis]`."); AddAttr("hop_length", "Number of steps to advance between adjacent frames and " "`0 < hop_length`."); AddAttr("axis", "Specify the axis to operate on the input Tensors. Its value " "should be 0(the first dimension) or -1(the last dimension).") .SetDefault(-1); AddComment(R"DOC( Slice the N-dimensional (where N >= 1) input into (overlapping) frames. )DOC"); } }; class FrameOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { const auto in_dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(in_dtype, ctx.GetPlace()); } }; template class FrameOpGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr retv) const override { retv->SetType("frame_grad"); retv->SetInput("X", this->Input("X")); retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); retv->SetAttrMap(this->Attrs()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; DECLARE_INFER_SHAPE_FUNCTOR(frame, FrameInferShapeFunctor, PD_INFER_META(phi::FrameInferMeta)); DECLARE_INFER_SHAPE_FUNCTOR(frame_grad, FrameGradInferShapeFunctor, PD_INFER_META(phi::UnchangedInferMeta)); REGISTER_OPERATOR(frame, ops::FrameOp, ops::FrameOpMaker, ops::FrameOpGradMaker, ops::FrameOpGradMaker, FrameInferShapeFunctor); REGISTER_OPERATOR(frame_grad, ops::FrameOpGrad, FrameGradInferShapeFunctor);