# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import unittest import numpy as np import sys import paddle.fluid as fluid from paddle.fluid import core from paddle.fluid.imperative.nn import FC from test_imperative_base import new_program_scope class MyLayer(fluid.imperative.Layer): def __init__(self): super(MyLayer, self).__init__() def forward(self, inputs): x = fluid.layers.relu(inputs) self._x_for_debug = x x = fluid.layers.elementwise_mul(x, x) x = fluid.layers.reduce_sum(x) return [x] class MyPyLayer(fluid.imperative.PyLayer): def __init__(self): super(MyPyLayer, self).__init__() @staticmethod def forward(inputs): return np.tanh(inputs[0]) @staticmethod def backward(inputs): inp, out, dout = inputs return np.array(dout) * (1 - np.square(np.array(out))) class MLP(fluid.imperative.Layer): def __init__(self): super(MLP, self).__init__() self._fc1 = FC(3, fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) self._fc2 = FC(4, fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) def forward(self, inputs): x = self._fc1(inputs) x = self._fc2(x) x = fluid.layers.reduce_sum(x) return x class TestImperative(unittest.TestCase): def test_layer(self): with fluid.imperative.guard(device=None): cl = core.Layer() cl.forward([]) l = fluid.imperative.Layer() self.assertRaises(NotImplementedError, l.forward, []) def test_pylayer_func_id(self): with fluid.imperative.guard(device=None): class PyLayer1(fluid.imperative.PyLayer): def __init__(self): super(PyLayer1, self).__init__() @staticmethod def forward(input): return input @staticmethod def backward(input): return input class PyLayer2(fluid.imperative.PyLayer): def __init__(self): super(PyLayer2, self).__init__() @staticmethod def forward(input): return input @staticmethod def backward(input): return input py_layer_1 = PyLayer1() py_layer_2 = PyLayer2() py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2]))) py_layer_2(fluid.imperative.base.to_variable(np.ones([2, 2]))) id = py_layer_1.forward_id self.assertGreater(id, 0) self.assertEqual(py_layer_1.backward_id, id + 1) self.assertEqual(py_layer_2.forward_id, id + 2) self.assertEqual(py_layer_2.backward_id, id + 3) py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2]))) self.assertEqual(py_layer_1.forward_id, id) def test_pylayer(self): np_inp = np.ones([2, 2], np.float32) with fluid.imperative.guard(device=None): my_py_layer = MyPyLayer() var_inp = fluid.imperative.base.to_variable(np_inp) outs = my_py_layer(var_inp) dy_out = np.sum(outs[0]._numpy()) outs[0]._backward() dy_grad = var_inp._gradient() with new_program_scope(): inp = fluid.layers.data( name="inp", shape=[2, 2], append_batch_size=False) # TODO(panyx0718): Paddle doesn't diff against data `inp`. x1 = inp * 1 # TODO(panyx0718): If reduce_sum is skipped, the result is wrong. x = fluid.layers.reduce_sum(fluid.layers.tanh(x1)) param_grads = fluid.backward.append_backward( x, parameter_list=[x1.name])[0] exe = fluid.Executor(fluid.CPUPlace()) static_out, static_grad = exe.run( feed={inp.name: np_inp}, fetch_list=[x.name, param_grads[1].name]) self.assertTrue(np.allclose(dy_out, static_out)) self.assertTrue(np.allclose(dy_grad, static_grad)) def test_layer_in_out(self): np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32) with fluid.imperative.guard(device=None): var_inp = fluid.imperative.base.to_variable(np_inp) l = MyLayer() x = l(var_inp)[0] self.assertIsNotNone(x) dy_out = x._numpy() x._backward() dy_grad = l._x_for_debug._gradient() with new_program_scope(): inp = fluid.layers.data( name="inp", shape=[3], append_batch_size=False) l = MyLayer() x = l(inp)[0] param_grads = fluid.backward.append_backward( x, parameter_list=[l._x_for_debug.name])[0] exe = fluid.Executor(fluid.CPUPlace()) static_out, static_grad = exe.run( feed={inp.name: np_inp}, fetch_list=[x.name, param_grads[1].name]) self.assertTrue(np.allclose(dy_out, static_out)) self.assertTrue(np.allclose(dy_grad, static_grad)) def test_mlp(self): np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) with fluid.imperative.guard(device=None): var_inp = fluid.imperative.base.to_variable(np_inp) mlp = MLP() out = mlp(var_inp) dy_out = out._numpy() out._backward() dy_grad = mlp._fc1._w._gradient() with new_program_scope(): inp = fluid.layers.data( name="inp", shape=[2, 2], append_batch_size=False) mlp = MLP() out = mlp(inp) param_grads = fluid.backward.append_backward( out, parameter_list=[mlp._fc1._w.name])[0] exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) static_out, static_grad = exe.run( feed={inp.name: np_inp}, fetch_list=[out.name, param_grads[1].name]) self.assertTrue(np.allclose(dy_out, static_out)) self.assertTrue(np.allclose(dy_grad, static_grad)) if __name__ == '__main__': unittest.main()