// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/prim/api/manual/prim_api/prim_api.h" #include "paddle/fluid/prim/api/manual/utils/utils.h" #include "paddle/phi/common/int_array.h" #include "paddle/phi/core/ddim.h" namespace paddle { namespace prim { using Tensor = paddle::experimental::Tensor; using IntArray = paddle::experimental::IntArrayBase; // using IntArray = paddle::experimental::IntArray; // This function should have as same signature as phi, which defined in // paddle/phi/api/backward/backward_api.h template void tanh_grad(const Tensor& out, const Tensor& grad_out, Tensor* grad_x) { auto tmp = pow(out, 2.0); tmp = scale(tmp, -1.0, 1.0, true); auto grad_x_tmp = multiply(grad_out, tmp); grad_x->set_impl(grad_x_tmp.impl()); } template void subtract_grad(const Tensor& x, const Tensor& y, const Tensor& out_grad, int axis, Tensor* dx, Tensor* dy) { if (dy) { auto scale_out_grad = scale(out_grad, -1.0, 0.0, true); if (phi::product(x.dims()) > phi::product(y.dims())) { // Maybe need reduce here phi::DDim reduce_dim = get_reduce_dims(x.dims(), y.dims()); auto dy_reduce_res = sum(scale_out_grad, phi::vectorize(reduce_dim), y.dtype(), false); auto dy_tmp = reshape(dy_reduce_res, phi::vectorize(y.dims())); dy->set_impl(dy_tmp.impl()); } else { by_pass(scale_out_grad, dy); } } if (dx) { if (phi::product(y.dims()) > phi::product(x.dims())) { // Maybe need reduce here auto reduce_dim = get_reduce_dims(y.dims(), x.dims()); auto dx_reduce_res = sum(out_grad, phi::vectorize(reduce_dim), x.dtype(), false); auto dx_tmp = reshape(dx_reduce_res, phi::vectorize(x.dims())); dx->set_impl(dx_tmp.impl()); } else { by_pass(out_grad, dx); } } } template void add_grad(const Tensor& x, const Tensor& y, const Tensor& out_grad, int axis, Tensor* dx, Tensor* dy) { if (dy) { if (phi::product(x.dims()) > phi::product(y.dims())) { // Maybe need reduce here phi::DDim reduce_dim = get_reduce_dims(x.dims(), y.dims()); auto dy_reduce_res = sum(out_grad, phi::vectorize(reduce_dim), y.dtype(), false); auto dy_tmp = reshape(dy_reduce_res, phi::vectorize(y.dims())); dy->set_impl(dy_tmp.impl()); } else { by_pass(out_grad, dy); } } if (dx) { if (phi::product(y.dims()) > phi::product(x.dims())) { // Maybe need reduce here auto reduce_dim = get_reduce_dims(y.dims(), x.dims()); auto dx_reduce_res = sum(out_grad, phi::vectorize(reduce_dim), x.dtype(), false); auto dx_tmp = reshape(dx_reduce_res, phi::vectorize(x.dims())); dx->set_impl(dx_tmp.impl()); } else { by_pass(out_grad, dx); } } } template void sum_grad(const Tensor& x, const Tensor& out_grad, const IntArray& axis, bool keepdim, bool reduce_all, Tensor* x_grad) { if (!x_grad) { return; } std::vector x_dim = phi::vectorize(x.dims()); int64_t axis_size = axis.size(); int64_t x_dim_size = x_dim.size(); reduce_all = false; if (reduce_all || axis_size == 0 || axis_size == x_dim_size) { reduce_all = true; } else { reduce_all = false; } auto x_grad_tmp = Tensor(); if (!keepdim) { auto axis_ = std::vector(); if (reduce_all) { for (int64_t i = 1; i < x_dim_size; i++) { axis_.push_back(i); } } else { axis_ = axis.GetData(); } auto out_grad_ = unsqueeze(out_grad, axis_); x_grad_tmp = expand(out_grad_, x_dim); } else { x_grad_tmp = expand(out_grad, x_dim); } x_grad->set_impl(x_grad_tmp.impl()); } template void divide_grad(const Tensor& x, const Tensor& y, const Tensor& out, const Tensor& out_grad, int axis, Tensor* dx, Tensor* dy) { if (dy) { // dy = -(x/y^2) * dout auto tmp0 = pow(y, 2.0); auto tmp1 = divide(x, tmp0); auto tmp2 = scale(tmp1, -1.0, 0.0, true); auto dy_res = multiply(tmp2, out_grad); if (phi::product(x.dims()) > phi::product(y.dims())) { // Maybe need reduce here phi::DDim reduce_dim = get_reduce_dims(x.dims(), y.dims()); auto dy_reduce_res = sum(dy_res, phi::vectorize(reduce_dim), y.dtype(), false); auto dy_tmp = reshape(dy_reduce_res, phi::vectorize(y.dims())); dy->set_impl(dy_tmp.impl()); } else { dy->set_impl(dy_res.impl()); } } // indicate we will compute dy if (dx) { // dx = (1/y) * dout auto one_tensor = full(phi::vectorize(y.dims()), 1.0); auto tmp0 = divide(one_tensor, y); auto dx_res = multiply(tmp0, out_grad); if (phi::product(y.dims()) > phi::product(x.dims())) { // Maybe need reduce here auto reduce_dim = get_reduce_dims(y.dims(), x.dims()); auto dx_reduce_res = sum(dx_res, phi::vectorize(reduce_dim), x.dtype(), false); auto dx_tmp = reshape(dx_reduce_res, phi::vectorize(x.dims())); dx->set_impl(dx_tmp.impl()); } else { dx->set_impl(dx_res.impl()); } } // indicate we will compute dx } template void sqrt_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) { if (x_grad) { auto div_x = full(phi::vectorize(out.dims()), 0.5); auto tmp = divide(div_x, out); auto x_grad_tmp = multiply(out_grad, tmp); x_grad->set_impl(x_grad_tmp.impl()); } } } // namespace prim } // namespace paddle