/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/detail/grpc_client.h" #include #include #include "paddle/fluid/framework/threadpool.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { namespace operators { namespace detail { bool RPCClient::AsyncSendVariable(const std::string& ep, const platform::DeviceContext& ctx, const framework::Scope& scope, const std::string& var_name, int64_t time_out) { const platform::DeviceContext* p_ctx = &ctx; const std::string ep_val = ep; const std::string var_name_val = var_name; const framework::Scope* p_scope = &scope; const auto ch = GetChannel(ep_val); framework::AsyncIO([var_name_val, p_ctx, ep_val, p_scope, time_out, ch, this] { auto* var = p_scope->FindVar(var_name_val); ::grpc::ByteBuffer req; SerializeToByteBuffer(var_name_val, var, *p_ctx, &req); // varhandle VarHandle var_h; var_h.ep = ep_val; var_h.scope = p_scope; var_h.name = var_name_val; var_h.ctx = p_ctx; // stub context SendProcessor* s = new SendProcessor(ch); s->Prepare(var_h, time_out); s->response_call_back_ = nullptr; auto call = s->stub_g_.PrepareUnaryCall( s->context_.get(), "/sendrecv.SendRecvService/SendVariable", req, &cq_); call->StartCall(); call->Finish(&s->reply_, &s->status_, reinterpret_cast(s)); }); req_count_++; return true; } void ProcGetResponse(const VarHandle& var_h, const ::grpc::ByteBuffer& ret_msg) { framework::Variable* outvar = nullptr; DeserializeFromByteBuffer(ret_msg, *var_h.ctx, var_h.scope, &outvar); } template void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) { ::grpc::Slice slice(proto.ByteSizeLong()); proto.SerializeWithCachedSizesToArray(const_cast(slice.begin())); ::grpc::ByteBuffer tmp(&slice, 1); result->Swap(&tmp); } bool RPCClient::AsyncGetVariable(const std::string& ep, const platform::DeviceContext& ctx, const framework::Scope& scope, const std::string& var_name, int64_t time_out) { const platform::DeviceContext* p_ctx = &ctx; const std::string ep_val = ep; const std::string var_name_val = var_name; const framework::Scope* p_scope = &scope; const auto ch = GetChannel(ep_val); framework::AsyncIO([var_name_val, ep_val, p_scope, p_ctx, time_out, ch, this] { // prepare input sendrecv::VariableMessage req; req.set_varname(var_name_val); ::grpc::ByteBuffer buf; RequestToByteBuffer(req, &buf); // var handle VarHandle var_h; var_h.ep = ep_val; var_h.scope = p_scope; var_h.name = var_name_val; var_h.ctx = p_ctx; // stub context GetProcessor* s = new GetProcessor(ch); s->Prepare(var_h, time_out); s->response_call_back_ = ProcGetResponse; auto call = s->stub_g_.PrepareUnaryCall( s->context_.get(), "/sendrecv.SendRecvService/GetVariable", buf, &cq_); call->StartCall(); call->Finish(&s->reply_, &s->status_, reinterpret_cast(s)); }); req_count_++; return true; } bool RPCClient::AsyncPrefetchVariable(const std::string& ep, const platform::DeviceContext& ctx, const framework::Scope& scope, const std::string& in_var_name, const std::string& out_var_name, int64_t time_out) { const platform::DeviceContext* p_ctx = &ctx; const std::string ep_val = ep; const std::string in_var_name_val = in_var_name; const std::string out_var_name_val = out_var_name; const framework::Scope* p_scope = &scope; const auto ch = GetChannel(ep_val); framework::AsyncIO([in_var_name_val, out_var_name_val, ep_val, p_scope, p_ctx, time_out, ch, this] { auto* var = p_scope->FindVar(in_var_name_val); ::grpc::ByteBuffer req; SerializeToByteBuffer(in_var_name_val, var, *p_ctx, &req, out_var_name_val); // var handle VarHandle var_h; var_h.ep = ep_val; var_h.scope = p_scope; var_h.name = out_var_name_val; var_h.ctx = p_ctx; // stub context GetProcessor* s = new GetProcessor(ch); s->Prepare(var_h, time_out); s->response_call_back_ = ProcGetResponse; auto call = s->stub_g_.PrepareUnaryCall( s->context_.get(), "/sendrecv.SendRecvService/PrefetchVariable", req, &cq_); call->StartCall(); call->Finish(&s->reply_, &s->status_, static_cast(s)); }); req_count_++; return true; } void RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) { const auto ch = GetChannel(ep); BatchBarrierProcessor* s = new BatchBarrierProcessor(ch); s->Prepare(time_out); sendrecv::VariableMessage req; req.set_varname(BATCH_BARRIER_MESSAGE); auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_); rpc->Finish(&s->reply_, &s->status_, reinterpret_cast(s)); req_count_++; } void RPCClient::AsyncSendFetchBarrier(const std::string& ep, int64_t time_out) { const auto ch = GetChannel(ep); FetchBarrierProcessor* s = new FetchBarrierProcessor(ch); s->Prepare(time_out); sendrecv::VariableMessage req; req.set_varname(FETCH_BARRIER_MESSAGE); auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_); rpc->Finish(&s->reply_, &s->status_, reinterpret_cast(s)); req_count_++; } bool RPCClient::Wait() { if (req_count_ <= 0) { return true; } const size_t kReqCnt = req_count_; bool a[kReqCnt]; std::vector> waits(req_count_); std::mutex mu; for (int i = 0; i < req_count_; i++) { waits[i] = framework::AsyncIO([i, &a, &mu, this] { bool ret = Proceed(); std::lock_guard l(mu); a[i] = ret; }); } for (int i = 0; i < req_count_; i++) { waits[i].wait(); } int last_req_count = req_count_; req_count_ = 0; for (int i = 0; i < last_req_count; i++) { if (!a[i]) { return false; } } return true; } bool RPCClient::Proceed() { void* tag = NULL; bool ok = false; // request counts. if (!cq_.Next(&tag, &ok)) { LOG(ERROR) << "Get meets CompletionQueue error"; return false; } GPR_ASSERT(ok); PADDLE_ENFORCE(tag); // TODO(gongwb): add more retries. BaseProcessor* c = static_cast(tag); if (!c->status_.ok()) { LOG(ERROR) << "proc param error:" << c->var_h_.String() << " grpc error:" << c->status_.error_message(); delete c; return false; } c->Process(); delete c; return true; } std::shared_ptr RPCClient::GetChannel(const std::string& ep) { std::unique_lock lock(mutex_); auto it = channels_.find(ep); if (it != channels_.end()) { return it->second; } grpc::ChannelArguments args; args.SetCompressionAlgorithm(GRPC_COMPRESS_NONE); args.SetMaxSendMessageSize(std::numeric_limits::max()); args.SetMaxReceiveMessageSize(std::numeric_limits::max()); auto ch = grpc::CreateCustomChannel(ep, grpc::InsecureChannelCredentials(), args); channels_[ep] = ch; return ch; } } // namespace detail } // namespace operators } // namespace paddle