# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle API_list = [ (paddle.quantile, np.quantile), (paddle.nanquantile, np.nanquantile), ] class TestQuantileAndNanquantile(unittest.TestCase): """ This class is used for numerical precision testing. If there is a corresponding numpy API, the precision comparison can be performed directly. Otherwise, it needs to be verified by numpy implementated function. """ def setUp(self): self.input_data = np.random.rand(4, 7, 6) # Test correctness when q and axis are set. def test_single_q(self): inp = self.input_data for (func, res_func) in API_list: x = paddle.to_tensor(inp) paddle_res = func(x, q=0.5, axis=2) np_res = res_func(inp, q=0.5, axis=2) np.testing.assert_allclose(paddle_res.numpy(), np_res, rtol=1e-05) inp[0, 1, 2] = np.nan # Test correctness for default axis. def test_with_no_axis(self): inp = self.input_data for (func, res_func) in API_list: x = paddle.to_tensor(inp) paddle_res = func(x, q=0.35) np_res = res_func(inp, q=0.35) np.testing.assert_allclose(paddle_res.numpy(), np_res, rtol=1e-05) inp[0, 2, 1] = np.nan inp[0, 1, 2] = np.nan # Test correctness for multiple axis. def test_with_multi_axis(self): inp = self.input_data for (func, res_func) in API_list: x = paddle.to_tensor(inp) paddle_res = func(x, q=0.75, axis=[0, 2]) np_res = res_func(inp, q=0.75, axis=[0, 2]) np.testing.assert_allclose(paddle_res.numpy(), np_res, rtol=1e-05) inp[0, 5, 3] = np.nan inp[0, 6, 2] = np.nan # Test correctness when keepdim is set. def test_with_keepdim(self): inp = self.input_data for (func, res_func) in API_list: x = paddle.to_tensor(inp) paddle_res = func(x, q=0.35, axis=2, keepdim=True) np_res = res_func(inp, q=0.35, axis=2, keepdims=True) np.testing.assert_allclose(paddle_res.numpy(), np_res, rtol=1e-05) inp[0, 3, 4] = np.nan # Test correctness when all parameters are set. def test_with_keepdim_and_multiple_axis(self): inp = self.input_data for (func, res_func) in API_list: x = paddle.to_tensor(inp) paddle_res = func(x, q=0.1, axis=[1, 2], keepdim=True) np_res = res_func(inp, q=0.1, axis=[1, 2], keepdims=True) np.testing.assert_allclose(paddle_res.numpy(), np_res, rtol=1e-05) inp[0, 6, 3] = np.nan # Test correctness when q = 0. def test_with_boundary_q(self): inp = self.input_data for (func, res_func) in API_list: x = paddle.to_tensor(inp) paddle_res = func(x, q=0, axis=1) np_res = res_func(inp, q=0, axis=1) np.testing.assert_allclose(paddle_res.numpy(), np_res, rtol=1e-05) inp[0, 2, 5] = np.nan # Test correctness when input includes NaN. def test_quantile_include_NaN(self): input_data = np.random.randn(2, 3, 4) input_data[0, 1, 1] = np.nan x = paddle.to_tensor(input_data) paddle_res = paddle.quantile(x, q=0.35, axis=0) np_res = np.quantile(input_data, q=0.35, axis=0) np.testing.assert_allclose( paddle_res.numpy(), np_res, rtol=1e-05, equal_nan=True ) # Test correctness when input filled with NaN. def test_nanquantile_all_NaN(self): input_data = np.full(shape=[2, 3], fill_value=np.nan) input_data[0, 2] = 0 x = paddle.to_tensor(input_data) paddle_res = paddle.nanquantile(x, q=0.35, axis=0) np_res = np.nanquantile(input_data, q=0.35, axis=0) np.testing.assert_allclose( paddle_res.numpy(), np_res, rtol=1e-05, equal_nan=True ) class TestMuitlpleQ(unittest.TestCase): """ This class is used to test multiple input of q. """ def setUp(self): self.input_data = np.random.rand(5, 3, 4) def test_quantile(self): x = paddle.to_tensor(self.input_data) paddle_res = paddle.quantile(x, q=[0.3, 0.44], axis=-2) np_res = np.quantile(self.input_data, q=[0.3, 0.44], axis=-2) np.testing.assert_allclose(paddle_res.numpy(), np_res, rtol=1e-05) def test_quantile_multiple_axis(self): x = paddle.to_tensor(self.input_data) paddle_res = paddle.quantile(x, q=[0.2, 0.67], axis=[1, -1]) np_res = np.quantile(self.input_data, q=[0.2, 0.67], axis=[1, -1]) np.testing.assert_allclose(paddle_res.numpy(), np_res, rtol=1e-05) def test_quantile_multiple_axis_keepdim(self): x = paddle.to_tensor(self.input_data) paddle_res = paddle.quantile( x, q=[0.1, 0.2, 0.3], axis=[1, 2], keepdim=True ) np_res = np.quantile( self.input_data, q=[0.1, 0.2, 0.3], axis=[1, 2], keepdims=True ) np.testing.assert_allclose(paddle_res.numpy(), np_res, rtol=1e-05) class TestError(unittest.TestCase): """ This class is used to test that exceptions are thrown correctly. Validity of all parameter values and types should be considered. """ def setUp(self): self.x = paddle.randn((2, 3, 4)) def test_errors(self): # Test error when q > 1 def test_q_range_error_1(): paddle_res = paddle.quantile(self.x, q=1.5) self.assertRaises(ValueError, test_q_range_error_1) # Test error when q < 0 def test_q_range_error_2(): paddle_res = paddle.quantile(self.x, q=[0.2, -0.3]) self.assertRaises(ValueError, test_q_range_error_2) # Test error with no valid q def test_q_range_error_3(): paddle_res = paddle.quantile(self.x, q=[]) self.assertRaises(ValueError, test_q_range_error_3) # Test error when x is not Tensor def test_x_type_error(): x = [1, 3, 4] paddle_res = paddle.quantile(x, q=0.9) self.assertRaises(TypeError, test_x_type_error) # Test error when scalar axis is not int def test_axis_type_error_1(): paddle_res = paddle.quantile(self.x, q=0.4, axis=0.4) self.assertRaises(ValueError, test_axis_type_error_1) # Test error when axis in List is not int def test_axis_type_error_2(): paddle_res = paddle.quantile(self.x, q=0.4, axis=[1, 0.4]) self.assertRaises(ValueError, test_axis_type_error_2) # Test error when axis not in [-D, D) def test_axis_value_error_1(): paddle_res = paddle.quantile(self.x, q=0.4, axis=10) self.assertRaises(ValueError, test_axis_value_error_1) # Test error when axis not in [-D, D) def test_axis_value_error_2(): paddle_res = paddle.quantile(self.x, q=0.4, axis=[1, -10]) self.assertRaises(ValueError, test_axis_value_error_2) class TestQuantileRuntime(unittest.TestCase): """ This class is used to test the API could run correctly with different devices, different data types, and dygraph/static graph mode. """ def setUp(self): self.input_data = np.random.rand(4, 7) self.dtypes = ['float32', 'float64'] self.devices = ['cpu'] if paddle.device.is_compiled_with_cuda(): self.devices.append('gpu') def test_dygraph(self): paddle.disable_static() for (func, res_func) in API_list: for device in self.devices: # Check different devices paddle.set_device(device) for dtype in self.dtypes: # Check different dtypes np_input_data = self.input_data.astype(dtype) x = paddle.to_tensor(np_input_data, dtype=dtype) paddle_res = func(x, q=0.5, axis=1) np_res = res_func(np_input_data, q=0.5, axis=1) np.testing.assert_allclose( paddle_res.numpy(), np_res, rtol=1e-05 ) def test_static(self): paddle.enable_static() for (func, res_func) in API_list: for device in self.devices: x = paddle.static.data( name="x", shape=self.input_data.shape, dtype=paddle.float32 ) x_fp64 = paddle.static.data( name="x_fp64", shape=self.input_data.shape, dtype=paddle.float64, ) results = func(x, q=0.5, axis=1) np_input_data = self.input_data.astype('float32') results_fp64 = func(x_fp64, q=0.5, axis=1) np_input_data_fp64 = self.input_data.astype('float64') exe = paddle.static.Executor(device) paddle_res, paddle_res_fp64 = exe.run( paddle.static.default_main_program(), feed={"x": np_input_data, "x_fp64": np_input_data_fp64}, fetch_list=[results, results_fp64], ) np_res = res_func(np_input_data, q=0.5, axis=1) np_res_fp64 = res_func(np_input_data_fp64, q=0.5, axis=1) self.assertTrue( np.allclose(paddle_res, np_res) and np.allclose(paddle_res_fp64, np_res_fp64) ) if __name__ == '__main__': unittest.main()