# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import os import paddle.fluid as fluid from paddle.fluid import core from paddle.fluid.framework import Program from paddle.fluid.compiler import CompiledProgram from paddle.fluid.executor import Executor from paddle.fluid.parallel_executor import ParallelExecutor from paddle.fluid.framework import Variable, Parameter from .runtime_base import RuntimeBase from ..base.private_helper_function import wait_server_ready def conv_indent(indent): return "".join([" "] * indent) class Accessor: def __init__(self): self.accessor_class = "" self.optimizer = None self.feature_dim = -1 self.embedding_dim = -1 self.optimizer = None def to_string(self, indent): accessor_str = "{}accessor {{{}\n{}}}" attrs = "" attrs += "accessor_class: \"{}\" ".format(self.accessor_class) attrs += "fea_dim: {} ".format(self.feature_dim) attrs += "embedx_dim: {} ".format(self.embedding_dim) attrs += "\n" if self.optimizer is not None: attrs += self.optimizer.to_string(indent) return accessor_str.format( conv_indent(indent), attrs, conv_indent(indent)) class CommonAccessor: def __init__(self): self.accessor_class = "" self.table_name = None self.attrs = [] self.params = [] self.dims = [] self.trainer_num = 0 self.sync = "false" self.initializers = [] self.opt_input_map = {} self.opt_attr_map = {} self.opt_init_map = {} self.define_optimize_map() def define_optimize_map(self): opt_input_map = {} opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)] opt_input_map["adam"] = [("Param", None), ("Moment1", None), ("Moment2", None), ("Beta1Pow", 1), ("Beta2Pow", 1), ("LearningRate", 1)] opt_input_map["sum"] = [("Param", None)] opt_attr_map = {} opt_attr_map["sgd"] = [] opt_attr_map["sum"] = [] opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"), ("epsilon", "f")] opt_init_map = {} opt_init_map["gaussian_random"] = ["seed", "mean", "std"] opt_init_map["fill_constant"] = ["value"] opt_init_map["uniform_random"] = ["seed", "min", "max"] opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"] self.opt_attr_map = opt_attr_map self.opt_input_map = opt_input_map self.opt_init_map = opt_init_map def get_shard(self, total_dim, shard_num, pserver_id): # remainder = total_dim % shard_num blocksize = int(total_dim / shard_num + 1) if blocksize * (pserver_id + 1) <= total_dim: return blocksize else: if blocksize * pserver_id < total_dim: return total_dim - blocksize * pserver_id else: return 0 def get_initializer_attr(self, value_name, o_startup_program): l_in = "&" attr_str = "" origin_var_name = value_name for op in o_startup_program.global_block().ops: if op.type in self.opt_init_map.keys( ) and origin_var_name == op.output("Out")[0]: init_attr = [op.type] for attr in self.opt_init_map[op.type]: init_attr.append(str(op.attr(attr))) attr_str = l_in.join(init_attr) break return attr_str def parse_by_optimizer(self, grad_name, is_sparse, total_dims, compiled_strategy): from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops param_name = compiled_strategy.grad_name_to_param_name[grad_name] main_program, startup_program = compiled_strategy.get_origin_programs() pserver_id = compiled_strategy.get_role_id() pserver_num = len(compiled_strategy.get_ps_endpoints()) optimizer_ops = _get_optimize_ops(main_program) oop = None for op in optimizer_ops: if op.input("Param")[0] == param_name: oop = op break if oop is None: raise ValueError("can not find optimizer for {}".format(grad_name)) params = [] dims = [] attrs = [] initializers = [] self.trainer_num = compiled_strategy.get_trainers() if compiled_strategy.is_geo_mode(): param_varnames = self.opt_input_map["sum"] attr_varnames = self.opt_attr_map["sum"] self.accessor_class = "sum" else: param_varnames = self.opt_input_map[oop.type] attr_varnames = self.opt_attr_map[oop.type] self.accessor_class = oop.type for (formal_name, shape) in param_varnames: params.append(formal_name) param = main_program.global_block().vars[oop.input(formal_name)[0]] if formal_name == "LearningRate" and param.name != "learning_rate_0": warnings.warn("will support decay soon") param = main_program.global_block().vars["learning_rate_0"] if shape is None: if is_sparse: shape = total_dims else: shape = self.get_shard(total_dims, pserver_num, pserver_id) dims.append(shape) if formal_name == "Param": initializer = "uniform_random&0&-1.0&1.0" else: initializer = self.get_initializer_attr(param.name, startup_program) initializers.append(initializer) for (attr_varname, type_) in attr_varnames: value = oop.attr(attr_varname) attrs.append("&".join([attr_varname, type_, str(value)])) self.params = params self.dims = dims self.initializers = initializers self.attrs = attrs def to_string(self, indent): accessor_str = "{}common {{{}\n{}}}" attrs = "" attrs += "name: \"{}\" ".format(self.accessor_class) if self.table_name: attrs += "table_name: \"{}\" ".format(self.table_name) attrs += "trainer_num: {} ".format(self.trainer_num) attrs += "sync: {} ".format(self.sync) for param in self.params: attrs += "params: \"{}\" ".format(param) for dim in self.dims: attrs += "dims: {} ".format(dim) for initializer in self.initializers: attrs += "initializers: \"{}\" ".format(initializer) attrs += "\n" return accessor_str.format( conv_indent(indent), attrs, conv_indent(indent)) class Tensor: def __init__(self): self.main_program_id = None self.startup_program_id = None self.feed_var_name = None self.fetch_var_name = None self.tensor_table_class = False def to_string(self, indent): program_str = "{}tensor {{{}\n{}}}" attrs = "" attrs += "feed_var_name: \"{}\" ".format(str(self.feed_var_name)) attrs += "fetch_var_name: \"{}\" ".format(str(self.fetch_var_name)) attrs += "startup_program_id: {} ".format(str(self.startup_program_id)) attrs += "main_program_id: {} ".format(str(self.main_program_id)) attrs += "tensor_table_class: \"{}\" ".format( str(self.tensor_table_class)) attrs += "\n" return program_str.format( conv_indent(indent), attrs, conv_indent(indent)) class Table: def __init__(self): self.id = -1 self.table_class = None self.shard_num = -1 self.type = None self.accessor = None self.common = None self.tensor = None def to_string(self, indent): table_str = "{}downpour_table_param {{{}\n{}}}" attrs = "" attrs += "table_id: {} ".format(self.id) attrs += "table_class: \"{}\" ".format(self.table_class) attrs += "shard_num: {} ".format(self.shard_num) attrs += "type: {}".format(self.type) attrs += "\n" indent += 2 if self.accessor is not None: attrs += self.accessor.to_string(indent) attrs += "\n" if self.tensor is not None: attrs += self.tensor.to_string(indent) attrs += "\n" if self.common is not None: attrs += self.common.to_string(indent) attrs += "\n" return table_str.format(conv_indent(indent), attrs, conv_indent(indent)) class Service: def __init__(self): self.server_class = "BrpcPsServer" self.client_class = "BrpcPsClient" self.service_class = "BrpcPsService" self.start_server_port = 0 self.server_thread_num = 12 def to_string(self, indent): service_str = "{}service_param {{{}\n{}}}" attrs = "" attrs += "server_class: \"{}\" ".format(self.server_class) attrs += "client_class: \"{}\" ".format(self.client_class) attrs += "service_class: \"{}\" ".format(self.service_class) attrs += "start_server_port: {} ".format(self.start_server_port) attrs += "server_thread_num: {} ".format(self.server_thread_num) return service_str.format( conv_indent(indent), attrs, conv_indent(indent)) class DownpourServer: def __init__(self): self.service = None self.tables = [] def set_service_param(self, service): self.service = service def append_tables(self, table): if not isinstance(table, Table): raise ValueError("only support instance Table") self.tables.append(table) def to_string(self, indent): server_str = "{}downpour_server_param {{{}\n{}}}" table_strs = "" indent += 2 table_strs += "\n" table_strs += self.service.to_string(indent) for table in self.tables: table_strs += "\n" table_strs += table.to_string(indent) return server_str.format( conv_indent(indent), table_strs, conv_indent(indent)) class Server: def __init__(self): self.servers = [] def add_server(self, server): if not isinstance(server, DownpourServer): raise ValueError("only support instance DownpourServer") self.servers.append(server) def __str__(self): server_str = "server_param {{{}\n}}" indent = 2 servers_str = "" for server in self.servers: servers_str += "\n" servers_str += server.to_string(indent) return server_str.format(servers_str) class DownpourWorker: def __init__(self): self.tables = [] def append_tables(self, table): if not isinstance(table, Table): raise ValueError("only support instance Table") self.tables.append(table) def to_string(self, indent): worker_str = "{}downpour_worker_param {{{}\n{}}}" table_strs = "" indent += 2 for table in self.tables: table_strs += "\n" table_strs += table.to_string(indent) return worker_str.format( conv_indent(indent), table_strs, conv_indent(indent)) class Worker: def __init__(self): self.workers = [] def add_worker(self, worker): if not isinstance(worker, DownpourWorker): raise ValueError("only support instance DownpourWorker") self.workers.append(worker) def __str__(self): worker_str = "worker_param {{{}\n}}" indent = 2 workers_str = "" for worker in self.workers: workers_str += "\n" workers_str += worker.to_string(indent) return worker_str.format(workers_str) class TheOnePSRuntime(RuntimeBase): def __init__(self): super(TheOnePSRuntime, self).__init__() self._communicator = None self._server = None self._worker = fluid.core.DistFleetWrapper() self._server_sub_program = [] self._heter_client = None def _set_basic_info(self, context): self.context = context self.role_maker = context["role_maker"] self.origin_main_program = context["origin_main_program"] self.origin_startup_program = context["origin_startup_program"] self.async_strategy = self._get_distributed_strategy() self.compiled_strategy = self.build_compiled_startegy() def _get_distributed_strategy(self): strategy = None from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \ StrategyFactory dist_strategy = self.context["valid_strategy"] k_steps = dist_strategy.a_sync_configs["k_steps"] if not dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_sync_strategy() if dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_async_strategy() if dist_strategy.a_sync and k_steps > 0: strategy = StrategyFactory.create_geo_strategy(k_steps) if not strategy: raise ValueError("k_steps must be invalid value, please check") return strategy def build_compiled_startegy(self): from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy compiled_config = CompileTimeStrategy( self.origin_main_program, self.origin_main_program, self.async_strategy, self.role_maker) return compiled_config def _init_worker(self): from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \ SyncStrategy, GeoStrategy is_sync = self.compiled_strategy.is_sync_mode() worker = self._get_fleet_proto(is_server=False, is_sync=is_sync) server = self._get_fleet_proto(is_server=True, is_sync=is_sync) def sync_strategy_envs(): kwargs = {} kwargs[ "pserver_endpoints"] = self.role_maker._get_pserver_endpoints() kwargs["trainer_id"] = self.role_maker._worker_index() return kwargs proto_txt = str(worker) + "\n" + str(server) debug = bool(int(os.getenv("PSERVER_DEBUG", "0"))) if debug: print("worker: \n{}".format(proto_txt)) endpoints = self.compiled_strategy.get_ps_endpoints() string_hosts = [] for idx, ep in enumerate(endpoints): host, port = ep.split(":") pshost = fluid.core.PSHost(host, int(port), idx) string_hosts.append(pshost.serialize_to_string()) dense_map = self.compiled_strategy.get_the_one_recv_context( split_dense_table=self.role_maker._is_heter_parameter_server_mode) send_ctx = self.compiled_strategy.get_the_one_send_context( split_dense_table=self.role_maker._is_heter_parameter_server_mode, ep_list=endpoints) trainer_config = self.async_strategy.get_trainer_runtime_config() debug = bool(int(os.getenv("PSERVER_DEBUG", "0"))) if debug: print("worker: \n{}".format(proto_txt)) print("communicator send_ctx:") for key in send_ctx: print("{}: {}".format(key, send_ctx[key])) for key in dense_map: print("{}: {}".format(key, dense_map[key])) kwargs = {} kwargs['need_global_step'] = "0" kwargs["trainer_id"] = self.role_maker._role_id() kwargs["trainers"] = self.role_maker._worker_num() if self.role_maker._is_heter_worker(): kwargs["trainer_id"] += kwargs["trainers"] for table in server.servers[0].tables: if table.table_class == "BarrierTable": kwargs["barrier_table_id"] = table.id break if isinstance(self.async_strategy, SyncStrategy): sync_kwargs = sync_strategy_envs() kwargs.update(sync_kwargs) from paddle.fluid.communicator import Communicator, HeterClient self._communicator = Communicator( trainer_config.mode, kwargs, trainer_config.get_communicator_flags()) self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt, string_hosts, fluid.global_scope()) dist_strategy = self.context["valid_strategy"] is_test = bool(int(os.getenv("TEST_MODE", "0"))) if self.role_maker._is_first_worker( ) and self.role_maker._is_heter_parameter_server_mode: # for ps-heter mode load all parameters on first_worker init_params = self.compiled_strategy.get_the_one_recv_context( split_dense_table=True, use_origin_program=True) else: init_params = dense_map if not is_test: self._communicator.init_params(init_params) if not self._communicator.is_running(): self._communicator.start() else: warnings.warn("communicator has been initialized, skip") launch_barrier = dist_strategy.a_sync_configs["launch_barrier"] launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1")) if launch_barrier and launch_barrier_flag: # for trainer wait server ready wait_server_ready(self.role_maker._get_pserver_endpoints()) # for ps-heter mode, wait heter worker ready if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker( ): wait_server_ready(self.role_maker._get_heter_worker_endpoints()) self._heter_client = HeterClient( self.role_maker._get_heter_worker_endpoints(), self.role_maker._role_id()) def _push_sparse_param(self, var_name, table_id=-1, scope=fluid.global_scope()): self._communicator.push_sparse_param(var_name, table_id, scope) def _get_executor(self): executor = fluid.Executor(fluid.CPUPlace()) if self.role_maker._is_heter_parameter_server_mode: heter_worker_device_guard = self.context[ "valid_strategy"].a_sync_configs[ "heter_worker_device_guard"].upper() if heter_worker_device_guard not in ["GPU", "XPU", "CPU"]: raise ValueError("Heter Worker Not Support Device {}".format( heter_worker_device_guard)) if self.role_maker._is_heter_worker(): if heter_worker_device_guard == "GPU": executor = Executor( fluid.CUDAPlace( int(os.getenv("FLAGS_selected_gpus", "0")))) elif heter_worker_device_guard == "XPU": executor = Executor( fluid.XPUPlace( int(os.getenv("FLAGS_selected_xpus", "0")))) return executor def _get_fleet_proto(self, is_server, is_sync): def _build_merge_accessor(ctx): accessor = Accessor() accessor.accessor_class = "CommMergeAccessor" accessor.optimizer = None if ctx.is_sparse(): accessor.feature_dim = ctx.sections()[0] accessor.embedding_dim = ctx.sections()[1] else: accessor.feature_dim = ctx.sections()[0] accessor.embedding_dim = 1 return accessor def _build_barrier_table(idx): table = Table() table.id = idx table.type = "PS_OTHER_TABLE" table.table_class = "BarrierTable" table.shard_num = 256 accessor = Accessor() accessor.accessor_class = "CommMergeAccessor" accessor.optimizer = None accessor.feature_dim = 0 accessor.embedding_dim = 0 table.accessor = accessor common = CommonAccessor() common.table_name = "barrier_table" trainer_num = self.compiled_strategy.get_trainers() if self.role_maker._is_heter_parameter_server_mode: trainer_num += len(self.role_maker._get_heter_worker_endpoints( )) common.trainer_num = trainer_num common.attrs = "" common.dims = [] common.params = [] table.common = common return table def _build_tensor_table(idx, tensor_dict): table = Table() table.id = idx table.type = "PS_OTHER_TABLE" table.table_class = tensor_dict["tensor_table_class"] table.shard_num = 256 accessor = Accessor() accessor.accessor_class = "CommMergeAccessor" accessor.optimizer = None accessor.feature_dim = 0 accessor.embedding_dim = 0 table.accessor = accessor common = CommonAccessor() common.table_name = tensor_dict["feed_var_name"] common.trainer_num = self.compiled_strategy.get_trainers() common.attrs = "" common.dims = [] common.params = [] table.common = common tensor = Tensor() tensor.main_program_id = tensor_dict["main_program_id"] tensor.startup_program_id = tensor_dict["startup_program_id"] tensor.feed_var_name = tensor_dict["feed_var_name"] tensor.fetch_var_name = tensor_dict["fetch_var_name"] tensor.tensor_table_class = tensor_dict["tensor_table_class"] table.tensor = tensor return table def _add_tensor_table(tables): tensor_table_dict = self.compiled_strategy.get_tensor_table_dict() program_idx = 0 for table_name in tensor_table_dict: if tensor_table_dict[table_name]["startup_program"] != None: tensor_table_dict[table_name][ "startup_program_id"] = program_idx self._server_sub_program.append(tensor_table_dict[ table_name]["startup_program"].desc) program_idx += 1 if tensor_table_dict[table_name]["main_program"] != None: tensor_table_dict[table_name][ "main_program_id"] = program_idx self._server_sub_program.append(tensor_table_dict[ table_name]["main_program"].desc) program_idx += 1 # Todo: Hard code for lr_decay table apply table id new_table = _build_tensor_table( len(tables), tensor_table_dict[table_name]) tables.append(new_table) return tables def _get_tables(): send_ctx = self.compiled_strategy.get_the_one_send_context( use_origin_program=True, split_dense_table=self.role_maker. _is_heter_parameter_server_mode) tables = [] for idx, (name, ctx) in enumerate(send_ctx.items()): table = Table() table.id = ctx.table_id() if ctx.is_tensor_table(): continue if ctx.is_sparse(): if len(ctx.origin_varnames()) < 1: continue table.type = "PS_SPARSE_TABLE" if self.compiled_strategy.is_geo_mode(): table.table_class = "SparseGeoTable" else: table.table_class = "CommonSparseTable" table.shard_num = 256 else: if len(ctx.origin_varnames()) < 1: continue table.type = "PS_DENSE_TABLE" table.table_class = "CommonDenseTable" table.shard_num = 256 common = CommonAccessor() if ctx.is_sparse(): common.table_name = self.compiled_strategy.grad_name_to_param_name[ ctx.origin_varnames()[0]] else: common.table_name = "MergedDense" common.parse_by_optimizer(ctx.origin_varnames()[0], ctx.is_sparse(), ctx.sections()[1] if ctx.is_sparse() else ctx.sections()[0], self.compiled_strategy) if is_sync: common.sync = "true" else: common.sync = "false" table.common = common accessor = _build_merge_accessor(ctx) table.accessor = accessor tables.append(table) tensor_table_dict = self.compiled_strategy.get_tensor_table_dict() if len(tensor_table_dict) > 0: tables = _add_tensor_table(tables) else: empty_porgram = Program() self._server_sub_program.append(empty_porgram.desc) barrier_table = _build_barrier_table(len(tables)) tables.append(barrier_table) return tables if is_server: server = Server() downpour_server = DownpourServer() service = Service() downpour_server.set_service_param(service) tables = _get_tables() downpour_server.tables = tables server.add_server(downpour_server) return server else: worker = Worker() downpour_worker = DownpourWorker() tables = _get_tables() downpour_worker.tables = tables worker.add_worker(downpour_worker) return worker def _init_server(self, dirname=None, var_names=None, **kwargs): if self.role_maker._is_heter_worker(): self._init_heter_worker() return role_id = self.compiled_strategy.get_role_id() endpoints = self.compiled_strategy.get_ps_endpoints() is_sync = self.compiled_strategy.is_sync_mode() server = self._get_fleet_proto(is_server=True, is_sync=is_sync) proto_txt = str(server) debug = bool(os.getenv("PSERVER_DEBUG", "0")) if debug: print("server: \n{}".format(proto_txt)) string_hosts = [] for idx, ep in enumerate(endpoints): host, port = ep.split(":") pshost = fluid.core.PSHost(host, int(port), idx) string_hosts.append(pshost.serialize_to_string()) self._server = fluid.core.DistFleetWrapper() self._server.init_server(proto_txt, string_hosts, role_id, self._server_sub_program) from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames dist_varnames = get_sparse_tablenames(self.origin_main_program, True) sparse_varnames = get_sparse_tablenames(self.origin_main_program, False) distributed_varnames = dist_varnames + sparse_varnames if var_names is None: load_varnames = distributed_varnames else: for var_name in var_names: if var_name not in distributed_varnames: raise ValueError( "fleet.init server can only load sparse variables in {}". format(distributed_varnames)) load_varnames = var_names if dirname is None or not load_varnames: return sparse_table_maps = {} for table in server.servers[0].tables: if table.type == "PS_SPARSE_TABLE" and table.common is not None: sparse_table_maps[table.common.table_name] = table.id dirname = os.path.normpath(dirname) pserver_id = self.role_maker._role_id() import time begin = time.time() for var_name in load_varnames: table_id = sparse_table_maps[var_name] path = os.path.join(dirname, var_name, "{}.block{}.txt".format(var_name, pserver_id)) meta = os.path.join(dirname, var_name, "{}.block{}.meta".format(var_name, pserver_id)) self._server.load_sparse(path, meta, table_id) end = time.time() print("init sparse variables: {} cost time: {}".format(load_varnames, end - begin)) def _run_server(self): if self.role_maker._is_heter_worker(): self._run_heter_worker() return ep = self.compiled_strategy.get_ps_endpoint() host, port = ep.split(":") self._server.run_server(host, int(port)) def _init_heter_worker(self): executor = self._get_executor() executor.run(fluid.default_startup_program()) self._init_worker() def _run_heter_worker(self): executor = self._get_executor() executor.run(fluid.default_main_program()) def _stop_worker(self): self._communicator.stop() if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker( ): self._heter_client.stop() executor = self._get_executor() executor.close() @staticmethod def __exclude_vars(exclude_var_names=[]): def is_valid(var): if var.name in exclude_var_names: return False from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts origin_varname, _, _ = _get_varname_parts(var.name) if origin_varname.endswith("@GRAD"): return False if origin_varname == "learning_rate_0": return False if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.READER: return False return var.persistable return is_valid def _save_sparse_params(self, executor, dirname, context, main_program, mode): from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames distributed_varnames = get_sparse_tablenames( self.compiled_strategy.origin_main_program, True) values = [] for id, names in context.items(): if names not in distributed_varnames: # only save sparse param to local self._worker.recv_and_save_model(id, dirname) # save sparse & distributed param on server self._worker.save_one_model(id, dirname, mode) values.extend(names) return values def _save_distributed_persistables(self, executor, dirname, main_program, mode=0): denses = self.compiled_strategy.get_the_one_recv_context( is_dense=True, split_dense_table=self.role_maker._is_heter_parameter_server_mode, use_origin_program=True) sparses = self.compiled_strategy.get_the_one_recv_context( is_dense=False, split_dense_table=self.role_maker._is_heter_parameter_server_mode, use_origin_program=True) sparse_varnames = self._save_sparse_params(executor, dirname, sparses, main_program, mode) recv_dense_varnames = [] for id, names in denses.items(): recv_dense_varnames.extend(names) saved_varnames = sparse_varnames remaining_vars = list( filter( TheOnePSRuntime.__exclude_vars(saved_varnames), main_program.list_vars())) fluid.io.save_vars( executor, main_program=main_program, dirname=dirname, vars=remaining_vars) def _ps_inference_save_persistables(self, executor, dirname, main_program=None, mode=0, **kwargs): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type" ) if main_program is None: main_program = self.compiled_strategy.get_origin_ps_main_program() if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed" ) # Todo(MrChengmo): Save optimizer status self._save_distributed_persistables(executor, dirname, main_program, mode) def _ps_inference_save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type" ) if main_program is not None: if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed" ) fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program, None, None, export_for_deployment) else: fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, self.origin_main_program, None, None, export_for_deployment, True) model_basename = "__model__" model_filename = os.path.join(dirname, model_basename) with open(model_filename, "rb") as f: program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) program._copy_dist_param_info_from(fluid.default_main_program()) self._ps_inference_save_persistables(executor, dirname, program) def _save_inference_model(self, *args, **kwargs): self._ps_inference_save_inference_model(*args, **kwargs) def _save_persistables(self, *args, **kwargs): self._ps_inference_save_persistables(*args, **kwargs)