// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/distributed/collective/ProcessGroupCustom.h" #include "paddle/fluid/distributed/collective/Common.h" #include "paddle/fluid/distributed/collective/CustomCCLTools.h" #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/place.h" #include "paddle/phi/common/place.h" DECLARE_bool(xccl_blocking_wait); constexpr int64_t kWaitBlockTImeout = 10; namespace paddle { namespace distributed { void SyncDefaultStream( const std::vector& places, std::vector& cclEvents, // NOLINT std::vector>& dev_ctx) { // NOLINT for (size_t i = 0; i < places.size(); ++i) { auto* default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(places[i])); cclEvents[i].Record(*dev_ctx[i]); cclEvents[i].Block(*default_ctx); } } std::shared_ptr ProcessGroupCustom::CreateTask( std::vector places, int rank, CommType comm_type, const std::vector& inputs) { return std::make_shared( places, rank, comm_type, inputs); } ProcessGroupCustom::CustomTask::CustomTask( const std::vector& places, int rank, CommType CommType, const std::vector& inputs) : Task(rank, inputs, CommType), places_(places) { control_events_.resize(places.size()); cclComms_.resize(places.size()); } ProcessGroupCustom::CustomTask::~CustomTask() {} void ProcessGroupCustom::CustomTask::SetOutputs( std::vector& outputs) { // NOLINT outputs_ = std::make_shared>(outputs); } void ProcessGroupCustom::CustomTask::SynchronizeStreams() { for (size_t i = 0; i < places_.size(); ++i) { auto* default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(places_[i])); phi::DeviceGuard guard(default_ctx->GetPlace()); phi::stream::Stream stream(default_ctx->GetPlace(), default_ctx->stream()); stream.WaitEvent(control_events_[i].GetCustomEvent()); } } bool ProcessGroupCustom::CustomTask::IsCompleted() { for (size_t i = 0; i < places_.size(); ++i) { if (!control_events_[i].Query()) { return false; } } return true; } bool ProcessGroupCustom::CustomTask::Wait(std::chrono::milliseconds timeout) { SynchronizeStreams(); while (!IsCompleted()) { std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout)); } return true; } // Same as Wait void ProcessGroupCustom::CustomTask::Synchronize() { Wait(kWaitTimeout); } ProcessGroupCustom::ProcessGroupCustom(const std::shared_ptr& store, const std::string& device_type, int rank, int size, int gid) : ProcessGroup(rank, size, gid), store_(store), device_type_(device_type) {} void ProcessGroupCustom::BroadcastUniqueCustomID( std::vector& ccl_ids) { // NOLINT if (rank_ == 0) { for (size_t i = 0; i < ccl_ids.size(); i++) { auto key = "ProcessGroupCustom/ccl_ids/" + std::to_string(i); store_->set(key, ccl_ids[i]); } } else { for (size_t i = 0; i < ccl_ids.size(); i++) { auto key = "ProcessGroupCustom/ccl_ids/" + std::to_string(i); ccl_ids[i] = store_->get(key); } } } // create CustomCCLManager cache for places_key void ProcessGroupCustom::CreateCustomManagerCache( const std::string& places_key, const std::vector& places) { PADDLE_ENFORCE_EQ(places_key.empty(), false, platform::errors::PreconditionNotMet( "Not able to create/get the HCCL Communicator since " "the NPU place are not known")); const std::string device_type = places.back().GetDeviceType(); std::vector> ccl_comms; ccl_comms.resize(places.size()); // using vector just for broadcast std::vector ccl_ids; ccl_ids.resize(1); auto& ccl_id = ccl_ids.front(); if (rank_ == 0) { phi::DeviceManager::CCLGetUniqueId(device_type, &ccl_id); } BroadcastUniqueCustomID(ccl_ids); VLOG(3) << "init custom ccl rank: " << rank_ << ", nranks: " << size_ << ", place: " << places_key << ", custom ccl uniqueid: " << SerializeCustomCCLUniqueId(ccl_id); std::vector> dev_ctx; dev_ctx.resize(places.size()); std::unique_ptr comms( new phi::ccl::CCLComm[places.size()]); for (size_t i = 0; i < places.size(); ++i) { phi::DeviceGuard guard(places[i]); ccl_comms[i] = CustomCCLCommManager::Create( device_type, GetSize(), GetRank(), &ccl_id, comms.get() + i); dev_ctx[i].reset(new CustomDeviceContext(places[i])); } std::vector events; events.resize(places.size()); // These caches will be useful to process sync/wait/communicate places_to_events_.emplace(places_key, std::move(events)); places_to_customcomm_.emplace(places_key, std::move(ccl_comms)); places_to_ctx_.emplace(places_key, std::move(dev_ctx)); } template std::shared_ptr ProcessGroupCustom::Collective( std::vector& inputs, std::vector& outputs, Fn fn, CommType op_type) { const auto places = GetPlaceList(inputs); const auto key = GetKeyFromPlaces(places); { std::lock_guard lock(mutex_); if (places_to_customcomm_.find(key) == places_to_customcomm_.end()) { CreateCustomManagerCache(key, places); } } auto& ccl_comms = places_to_customcomm_[key]; SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]); auto task = CreateTask(places, rank_, op_type, inputs); task->SetOutputs(outputs); for (size_t i = 0; i < inputs.size(); ++i) { phi::DeviceGuard guard(places[i]); const auto& ccl_stream = places_to_ctx_[key][i]->stream(); phi::stream::Stream stream(places[i], ccl_stream); fn(inputs[i], outputs[i], ccl_comms[i]->GetCustomCCLComm(), stream); } for (size_t i = 0; i < inputs.size(); ++i) { phi::DeviceGuard guard(places[i]); task->control_events_[i].Record(*places_to_ctx_[key][i]); } return task; } std::shared_ptr ProcessGroupCustom::AllGather( std::vector& in_tensors, std::vector& out_tensors) { PADDLE_ENFORCE_EQ( CheckTensorsInCustomPlace(in_tensors, device_type_), true, platform::errors::InvalidArgument( "All inputs should be in CustomPlace(%s).", device_type_)); PADDLE_ENFORCE_EQ( CheckTensorsInCustomPlace(out_tensors, device_type_), true, platform::errors::InvalidArgument( "All outputs should be in CustomPlace(%s).", device_type_)); return Collective( in_tensors, out_tensors, [&](phi::DenseTensor& input, phi::DenseTensor& output, phi::ccl::CCLComm comm, const phi::stream::Stream& stream) { return phi::DeviceManager::CCLAllGather( device_type_, input.data(), output.data(), input.numel(), phi::ccl::ToCCLDataType(input.dtype()), comm, stream); }, CommType::ALLGATHER); } void* XcclGetPointerByOffset(void* raw_pointer, size_t offset, experimental::DataType type) { if (type == experimental::DataType::FLOAT32) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else if (type == experimental::DataType::FLOAT64) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else if (type == experimental::DataType::INT32) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else if (type == experimental::DataType::INT64) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else if (type == experimental::DataType::FLOAT16) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else { PADDLE_THROW(platform::errors::Unimplemented( "This datatype in xccl is not supported.")); } return nullptr; } // NOTE: this is ONLY for compatibility std::shared_ptr ProcessGroupCustom::AllGather( phi::DenseTensor* out_tensor, const phi::DenseTensor& in_tensor, int64_t offset, int64_t numel, bool sync_op) { std::vector in_wrapper{in_tensor}; std::vector out_wrapper{*out_tensor}; return Collective( in_wrapper, out_wrapper, [&](phi::DenseTensor& input, phi::DenseTensor& output, phi::ccl::CCLComm comm, const phi::stream::Stream& stream) { return phi::DeviceManager::CCLAllGather( device_type_, XcclGetPointerByOffset(input.data(), offset, input.dtype()), output.data(), numel, phi::ccl::ToCCLDataType(input.dtype()), comm, stream); }, CommType::ALLGATHER); } std::shared_ptr ProcessGroupCustom::AllReduce( std::vector& in_tensors, // NOLINT std::vector& out_tensors, // NOLINT const AllreduceOptions& opts) { PADDLE_ENFORCE_EQ( CheckTensorsInCustomPlace(in_tensors, device_type_), true, platform::errors::InvalidArgument( "All inputs should be in CustomPlace(%s).", device_type_)); PADDLE_ENFORCE_EQ( CheckTensorsInCustomPlace(out_tensors, device_type_), true, platform::errors::InvalidArgument( "All outputs should be in CustomPlace(%s).", device_type_)); return Collective( in_tensors, out_tensors, [&](phi::DenseTensor& input, phi::DenseTensor& output, phi::ccl::CCLComm comm, const phi::stream::Stream& stream) { return phi::DeviceManager::CCLAllReduce( device_type_, input.data(), output.data(), input.numel(), phi::ccl::ToCCLDataType(input.dtype()), ToCustomCCLRedType(opts.reduce_op), comm, stream); }, CommType::ALLREDUCE); } std::shared_ptr ProcessGroupCustom::Broadcast( std::vector& in_tensors, // NOLINT std::vector& out_tensors, // NOLINT const BroadcastOptions& opts) { PADDLE_ENFORCE_EQ( CheckTensorsInCustomPlace(in_tensors, device_type_), true, platform::errors::InvalidArgument( "All inputs should be in CustomPlace(%s).", device_type_)); PADDLE_ENFORCE_EQ( CheckTensorsInCustomPlace(out_tensors, device_type_), true, platform::errors::InvalidArgument( "All outputs should be in CustomPlace(%s).", device_type_)); return Collective( in_tensors, out_tensors, [&](phi::DenseTensor& input, phi::DenseTensor& output, phi::ccl::CCLComm comm, const phi::stream::Stream& stream) { int root = opts.source_rank * in_tensors.size() + opts.source_root; if (rank_ == root) { return phi::DeviceManager::CCLBroadcast( device_type_, input.data(), input.numel(), phi::ccl::ToCCLDataType(input.dtype()), root, comm, stream); } else { return phi::DeviceManager::CCLBroadcast( device_type_, output.data(), output.numel(), phi::ccl::ToCCLDataType(output.dtype()), root, comm, stream); } }, CommType::BROADCAST); } std::shared_ptr ProcessGroupCustom::Barrier( const BarrierOptions& opts) { // Only support single card single process PADDLE_ENFORCE_GE(opts.device_id, 0, platform::errors::PreconditionNotMet( "The barrier device id must greater or equal than 0.")); platform::CustomPlace place(device_type_, opts.device_id); std::vector places = {place}; std::vector barrierTensors; barrierTensors.reserve(places.size()); for (auto& place : places) { phi::DeviceGuard guard(place); phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim({1})); auto allocator = std::unique_ptr( new paddle::experimental::DefaultAllocator(place)); barrierTensors.emplace_back(allocator.get(), meta); } auto task = ProcessGroupCustom::AllReduce(barrierTensors, barrierTensors); auto xccl_task = dynamic_cast(task.get()); xccl_task->barrierTensors_ = std::move(barrierTensors); return task; } phi::ccl::CCLComm ProcessGroupCustom::CustomCCLComm(const Place& place) const { std::vector places = {place}; const auto& iter = places_to_customcomm_.find(GetKeyFromPlaces(places)); PADDLE_ENFORCE_NE(iter, places_to_customcomm_.end(), platform::errors::InvalidArgument( "Cannot find nccl comm in process group.")); return iter->second[0]->GetCustomCCLComm(); } } // namespace distributed } // namespace paddle