/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/engine.h" #include "paddle/phi/common/data_type.h" namespace paddle { namespace framework { class Scope; namespace proto { class OpDesc; } // namespace proto } // namespace framework } // namespace paddle namespace paddle { namespace inference { namespace tensorrt { template void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode, RegistFunc fadd_layer, SetDilationFunc fset_dilation, const std::string& name) { VLOG(3) << "convert a fluid " << name << " op to tensorrt layer without bias"; framework::OpDesc op_desc(op, nullptr); auto* X = engine->GetITensor(op_desc.Input("Input").front()); std::string filter_var_name = op_desc.Input("Filter").front(); auto* Y_v = scope.FindVar(filter_var_name); PADDLE_ENFORCE_NOT_NULL( Y_v, platform::errors::NotFound("Can not find %s presistale var in scope.", filter_var_name)); auto* Y_t = Y_v->GetMutable(); bool enable_int8 = op_desc.HasAttr("enable_int8"); if (enable_int8) { #if IS_TRT_VERSION_GE(5000) float in_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("Input_scale")); engine->SetTensorDynamicRange(X, in_scale); #endif } PADDLE_ENFORCE_EQ(Y_t->dims().size(), 4UL, platform::errors::InvalidArgument( "The conv2d filter's dims size should be 4, but got %d", Y_t->dims().size())); const int n_output = Y_t->dims()[0]; const int n_input = Y_t->dims()[1]; const int filter_h = Y_t->dims()[2]; const int filter_w = Y_t->dims()[3]; const int groups = PADDLE_GET_CONST(int, op_desc.GetAttr("groups")); const std::vector dilations = PADDLE_GET_CONST(std::vector, op_desc.GetAttr("dilations")); const std::vector strides = PADDLE_GET_CONST(std::vector, op_desc.GetAttr("strides")); std::vector paddings = PADDLE_GET_CONST(std::vector, op_desc.GetAttr("paddings")); // for conv2d_transpose std::vector output_padding; if (op_desc.HasAttr("output_padding")) { output_padding = PADDLE_GET_CONST(std::vector, op_desc.GetAttr("output_padding")); } std::string padding_algorithm = "EXPLICIT"; if (op_desc.HasAttr("padding_algorithm")) padding_algorithm = PADDLE_GET_CONST(std::string, op_desc.GetAttr("padding_algorithm")); if (padding_algorithm == "VALID") { for (size_t i = 0; i < paddings.size(); i++) { paddings[i] = 0; } } nvinfer1::DimsHW nv_ksize(filter_h, filter_w); nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]); nvinfer1::DimsHW nv_strides(strides[0], strides[1]); nvinfer1::DimsHW nv_pre_paddings; nvinfer1::DimsHW nv_post_paddings; if (paddings.size() == 2) { nv_pre_paddings.d[0] = paddings[0]; nv_pre_paddings.d[1] = paddings[1]; nv_post_paddings.d[0] = paddings[0]; nv_post_paddings.d[1] = paddings[1]; } else { nv_pre_paddings.d[0] = paddings[0]; nv_pre_paddings.d[1] = paddings[2]; nv_post_paddings.d[0] = paddings[1]; nv_post_paddings.d[1] = paddings[3]; } auto weight = engine->GetTrtWeight(op_desc.Input("Filter").front(), *Y_t); TensorRTEngine::Weight bias; bias.SetDataType(weight.get().type); bias.SetCount(0); bias.SetValues(nullptr); if (op_desc.Type() == "conv2d_fusion") { auto* bias_tensor = scope.GetVar(op_desc.Input("Bias").front()); auto* bias_tensor_data = bias_tensor->GetMutable(); bias = engine->GetTrtWeight(op_desc.Input("Bias").front(), *bias_tensor_data); } // In conv2d_transpose and depthwise_conv2d_transpose, // output channels = filter_dims[1] * groups auto* layer = (op_desc.Type() == "conv2d_transpose" || op_desc.Type() == "depthwise_conv2d_transpose") ? fadd_layer(const_cast(X), n_input * groups, nv_ksize, weight, bias) : fadd_layer(const_cast(X), n_output, nv_ksize, weight, bias); PADDLE_ENFORCE_NOT_NULL( layer, platform::errors::Fatal("TensorRT create conv2d/conv2d_transpose" " layer failed.")); layer->setStride(nv_strides); layer->setPrePadding(nv_pre_paddings); if (output_padding.size() > 0) { nv_post_paddings.d[0] -= output_padding[0]; nv_post_paddings.d[1] -= output_padding[1]; } if (nv_post_paddings.d[0] < 0 || nv_post_paddings.d[1] < 0) { PADDLE_THROW(platform::errors::Fatal( "The value in conv2d_transpose's PostPadding should be >= 0.")); } layer->setPostPadding(nv_post_paddings); layer->setNbGroups(groups); if (padding_algorithm == "SAME") { layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER); nv_dilations.d[0] = 1; nv_dilations.d[1] = 1; } // set dilations fset_dilation(layer, nv_dilations); auto output_name = op_desc.Output("Output").front(); layer->setName((name + " (Output: " + output_name + ")").c_str()); layer->getOutput(0)->setName(output_name.c_str()); engine->SetITensor(output_name, layer->getOutput(0)); if (test_mode) { engine->DeclareOutput(output_name); } } class Conv2dOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { ConvertConv2d( engine_, op, scope, test_mode, [&](nvinfer1::ITensor* inputs, int n_output, /* Conv output maps */ nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight, TensorRTEngine::Weight& bias) -> nvinfer1::IConvolutionLayer* { auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output, ksize, weight.get(), bias.get()); return layer; }, [](nvinfer1::IConvolutionLayer* layer, nvinfer1::DimsHW& dilations) { layer->setDilation(dilations); }, "conv2d"); } }; class Deconv2dOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { ConvertConv2d( engine_, op, scope, test_mode, [&](nvinfer1::ITensor* inputs, int n_output, /* Deconv input maps */ nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight, TensorRTEngine::Weight& bias) -> nvinfer1::IDeconvolutionLayer* { auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Deconvolution, *inputs, n_output, ksize, weight.get(), bias.get()); return layer; }, [](nvinfer1::IDeconvolutionLayer* layer, nvinfer1::DimsHW& dilations) { }, "conv2d_transpose"); } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter); REGISTER_TRT_OP_CONVERTER(conv2d_fusion, Conv2dOpConverter); REGISTER_TRT_OP_CONVERTER(conv2d_transpose, Deconv2dOpConverter);