# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle import numpy as np import paddle.fluid.core as core import paddle.fluid as fluid from paddle.fluid import Program, program_guard paddle.set_device('cpu') class TestRenormAPI(unittest.TestCase): def input_data(self): self.data_x = np.array([[[2.0, 2, -2], [3, 0.3, 3]], [[2, -8, 2], [3.1, 3.7, 3]]]) self.p = 1.0 self.dim = 2 self.max_norm = 2.05 def test_renorm_api(self): paddle.enable_static() self.input_data() # case 1: with program_guard(Program(), Program()): #x = fluid.layers.data(name = 'x',shape=[-1, 2, 3]) x = paddle.static.data(name="x", shape=[-1, 2, 3], dtype='float64') z = paddle.renorm(x, self.p, self.dim, self.max_norm) exe = fluid.Executor(fluid.CPUPlace()) res, = exe.run(feed={"x": self.data_x}, fetch_list=[z], return_numpy=False) expected = np.array([[[0.40594056, 0.29285714, -0.41000000], [0.60891086, 0.04392857, 0.61500001]], [[0.40594056, -1.17142856, 0.41000000], [0.62920785, 0.54178572, 0.61500001]]]) self.assertTrue(np.allclose(expected, np.array(res))) def test_dygraph_api(self): self.input_data() # case axis none with fluid.dygraph.guard(fluid.CPUPlace()): input = [[[2.0, 2, -2], [3, 0.3, 3]], [[2, -8, 2], [3.1, 3.7, 3]]] x = paddle.to_tensor(input, stop_gradient=False) y = paddle.renorm(x, 1.0, 2, 2.05) expected = np.array([[[0.40594056, 0.29285714, -0.41000000], [0.60891086, 0.04392857, 0.61500001]], [[0.40594056, -1.17142856, 0.41000000], [0.62920785, 0.54178572, 0.61500001]]]) self.assertTrue(np.allclose(expected, np.array(y))) z = paddle.mean(y) z.backward(retain_graph=True) expected_grad = np.array([[[0, 0.01394558, 0.02733333], [0, 0.01394558, 0.00683333]], [[0, 0.01045918, 0.00683333], [0, 0.01394558, 0.00683333]]]) self.assertTrue(np.allclose(expected_grad, np.array(x.grad))) # #test exception: with fluid.dygraph.guard(): input = [[[2.0, 2, -2], [3, 0.3, 3]], [[2, -8, 2], [3.1, 3.7, 3]]] x = paddle.to_tensor(input, stop_gradient=False) exp = False try: paddle.renorm(x, 1.0, 8, 2.05) except: exp = True self.assertTrue(exp) exp = False try: paddle.renorm(x, 1.0, -4, 2.05) except: exp = True self.assertTrue(exp) y = paddle.renorm(x, 1.0, -1, 2.05) expected = np.array([[[0.40594056, 0.29285714, -0.41000000], [0.60891086, 0.04392857, 0.61500001]], [[0.40594056, -1.17142856, 0.41000000], [0.62920785, 0.54178572, 0.61500001]]]) self.assertTrue(np.allclose(expected, np.array(y))) if __name__ == '__main__': paddle.enable_static() unittest.main()