/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/functors.h" #include "paddle/fluid/platform/transform.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenVector = framework::EigenVector; template using EigenMatrix = framework::EigenMatrix; template struct SubFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a - b; } }; template class CenterLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *X = ctx.Input("X"); // deep feature auto *labels = ctx.Input("Label"); auto *centers = ctx.Input("Centers"); auto *update_rate = ctx.Input("CenterUpdateRate"); int cluster_num = ctx.Attr("cluster_num"); auto *lr_center = update_rate->data(); T alpha = lr_center[0]; bool need_update = static_cast(ctx.Attr("need_update")); auto x_data = X->data(); auto label_data = labels->data(); auto centers_dim = centers->dims(); auto centers_data = centers->data(); auto x_dims = X->dims(); int batch_size = x_dims[0]; int deep_feat_dim = x_dims[1]; auto centers_diff = ctx.Output("SampleCenterDiff"); auto centers_diff_data = centers_diff->mutable_data(ctx.GetPlace()); auto *out_loss = ctx.Output("Loss"); auto *centers_out = ctx.Output("CentersOut"); auto *centers_out_data = centers_out->mutable_data(ctx.GetPlace()); if (centers_out_data != centers_data) { int size = centers_out->numel() * sizeof(T); memcpy(centers_out_data, centers_data, size); } std::vector center_update_count(cluster_num, 1); auto &dev_ctx = ctx.template device_context(); auto loss_data = out_loss->mutable_data(ctx.GetPlace()); Tensor centers_diffacc; // used to accumulate all diff auto centers_diffacc_data = centers_diffacc.mutable_data(centers_dim, ctx.GetPlace()); int numel = centers_diffacc.numel(); std::memset(centers_diffacc_data, 0, sizeof(T) * numel); auto blas = math::GetBlas(ctx); int tLabel; const T *x_index; const T *center_index; T *center_out_index; T *center_loss_diff_index; T *acc_index; platform::Transform trans; for (int i = 0; i < batch_size; ++i) { tLabel = label_data[i]; center_update_count[tLabel]++; x_index = x_data + i * deep_feat_dim; // xi index center_index = centers_data + tLabel * deep_feat_dim; // center index center_loss_diff_index = centers_diff_data + i * deep_feat_dim; trans(dev_ctx, x_index, x_index + deep_feat_dim, center_index, center_loss_diff_index, SubFunctor()); acc_index = centers_diffacc_data + tLabel * deep_feat_dim; blas.VADD(deep_feat_dim, center_loss_diff_index, acc_index, acc_index); // accumulate loss_data[i] = blas.DOT(deep_feat_dim, center_loss_diff_index, center_loss_diff_index) / T(2.0); } // update centers data if (need_update == true) { for (int i = 0; i < cluster_num; i++) { acc_index = centers_diffacc_data + i * deep_feat_dim; center_out_index = centers_out_data + i * deep_feat_dim; T scale = alpha / center_update_count[i]; blas.SCAL(deep_feat_dim, scale, acc_index); blas.VADD(deep_feat_dim, acc_index, center_out_index, center_out_index); } } } }; template class CenterLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto *in0 = context.Input("SampleCenterDiff"); auto *in1 = context.Input(framework::GradVarName("Loss")); auto *x_g = context.Output(framework::GradVarName("X")); auto sub_result = EigenMatrix::From(*in0); auto out_grad = EigenMatrix::From(*in1); auto x_dims = x_g->dims(); int cols = x_g->numel() / x_dims[0]; // calculate gradient auto grad_mat = (out_grad.broadcast(Eigen::array({{1, cols}}))) * sub_result; // propagate back to input auto &eigen_place = *context.template device_context().eigen_device(); x_g->mutable_data(context.GetPlace()); // eigen matrix auto x_grad = EigenMatrix::From(*x_g, framework::make_ddim({x_dims[0], cols})); x_grad.device(eigen_place) = grad_mat; } }; } // namespace operators } // namespace paddle