// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tests/api/tester_helper.h" DEFINE_bool(with_precision_check, true, "turn on test"); namespace paddle { namespace inference { using namespace framework; // NOLINT using namespace contrib; // NOLINT struct DataRecord { std::vector>> link_step_data_all; std::vector> week_data_all, minute_data_all; std::vector lod1, lod2, lod3; std::vector> rnn_link_data, rnn_week_datas, rnn_minute_datas; size_t num_samples; // total number of samples size_t batch_iter{0}; size_t batch_size{1}; DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= link_step_data_all.size()) { data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter, link_step_data_all.begin() + batch_end); data.week_data_all.assign(week_data_all.begin() + batch_iter, week_data_all.begin() + batch_end); data.minute_data_all.assign(minute_data_all.begin() + batch_iter, minute_data_all.begin() + batch_end); // Prepare LoDs data.lod1.push_back(0); data.lod2.push_back(0); data.lod3.push_back(0); CHECK(!data.link_step_data_all.empty()) << "empty"; CHECK(!data.week_data_all.empty()); CHECK(!data.minute_data_all.empty()); CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size()); CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size()); for (size_t j = 0; j < data.link_step_data_all.size(); j++) { for (const auto &d : data.link_step_data_all[j]) { data.rnn_link_data.push_back(d); } data.rnn_week_datas.push_back(data.week_data_all[j]); data.rnn_minute_datas.push_back(data.minute_data_all[j]); // calculate lod data.lod1.push_back(data.lod1.back() + data.link_step_data_all[j].size()); data.lod3.push_back(data.lod3.back() + 1); for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) { data.lod2.push_back(data.lod2.back() + data.link_step_data_all[j].size()); } } } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, ':', &data); std::vector> link_step_data; std::vector link_datas; split(data[0], '|', &link_datas); for (auto &step_data : link_datas) { std::vector tmp; split_to_float(step_data, ',', &tmp); link_step_data.push_back(tmp); } // load week data std::vector week_data; split_to_float(data[2], ',', &week_data); // load minute data std::vector minute_data; split_to_float(data[1], ',', &minute_data); link_step_data_all.push_back(std::move(link_step_data)); week_data_all.push_back(std::move(week_data)); minute_data_all.push_back(std::move(minute_data)); } num_samples = num_lines; } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor, week_tensor, minute_tensor; lod_attention_tensor.name = "data_lod_attention"; init_zero_tensor.name = "cell_init"; lod_tensor_tensor.name = "data"; week_tensor.name = "week"; minute_tensor.name = "minute"; auto one_batch = data->NextBatch(); std::vector rnn_link_data_shape( {static_cast(one_batch.rnn_link_data.size()), static_cast(one_batch.rnn_link_data.front().size())}); lod_attention_tensor.shape.assign({1, 2}); lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2}); init_zero_tensor.shape.assign({batch_size, 15}); init_zero_tensor.lod.assign({one_batch.lod3}); lod_tensor_tensor.shape = rnn_link_data_shape; lod_tensor_tensor.lod.assign({one_batch.lod1}); // clang-format off week_tensor.shape.assign( {static_cast(one_batch.rnn_week_datas.size()), static_cast(one_batch.rnn_week_datas.front().size())}); week_tensor.lod.assign({one_batch.lod3}); minute_tensor.shape.assign( {static_cast(one_batch.rnn_minute_datas.size()), static_cast(one_batch.rnn_minute_datas.front().size())}); minute_tensor.lod.assign({one_batch.lod3}); // clang-format on // assign data TensorAssignData(&lod_attention_tensor, std::vector>({{0, 0}})); std::vector tmp_zeros(batch_size * 15, 0.); TensorAssignData(&init_zero_tensor, {tmp_zeros}); TensorAssignData(&lod_tensor_tensor, one_batch.rnn_link_data); TensorAssignData(&week_tensor, one_batch.rnn_week_datas); TensorAssignData(&minute_tensor, one_batch.rnn_minute_datas); // Set inputs. auto init_zero_tensor1 = init_zero_tensor; init_zero_tensor1.name = "hidden_init"; input_slots->assign({week_tensor, init_zero_tensor, minute_tensor, init_zero_tensor1, lod_attention_tensor, lod_tensor_tensor}); for (auto &tensor : *input_slots) { tensor.dtype = PaddleDType::FLOAT32; } } void PrepareZeroCopyInputs(ZeroCopyTensor *lod_attention_tensor, ZeroCopyTensor *cell_init_tensor, ZeroCopyTensor *data_tensor, ZeroCopyTensor *hidden_init_tensor, ZeroCopyTensor *week_tensor, ZeroCopyTensor *minute_tensor, DataRecord *data_record, int batch_size) { auto one_batch = data_record->NextBatch(); std::vector rnn_link_data_shape( {static_cast(one_batch.rnn_link_data.size()), static_cast(one_batch.rnn_link_data.front().size())}); lod_attention_tensor->Reshape({1, 2}); lod_attention_tensor->SetLoD({one_batch.lod1, one_batch.lod2}); cell_init_tensor->Reshape({batch_size, 15}); cell_init_tensor->SetLoD({one_batch.lod3}); hidden_init_tensor->Reshape({batch_size, 15}); hidden_init_tensor->SetLoD({one_batch.lod3}); data_tensor->Reshape(rnn_link_data_shape); data_tensor->SetLoD({one_batch.lod1}); week_tensor->Reshape( {static_cast(one_batch.rnn_week_datas.size()), static_cast(one_batch.rnn_week_datas.front().size())}); week_tensor->SetLoD({one_batch.lod3}); minute_tensor->Reshape( {static_cast(one_batch.rnn_minute_datas.size()), static_cast(one_batch.rnn_minute_datas.front().size())}); minute_tensor->SetLoD({one_batch.lod3}); // assign data float arr0[] = {0, 0}; std::vector zeros(batch_size * 15, 0); std::copy_n(arr0, 2, lod_attention_tensor->mutable_data(PaddlePlace::kCPU)); std::copy_n(arr0, 2, data_tensor->mutable_data(PaddlePlace::kCPU)); std::copy_n(zeros.begin(), zeros.size(), cell_init_tensor->mutable_data(PaddlePlace::kCPU)); std::copy_n(zeros.begin(), zeros.size(), hidden_init_tensor->mutable_data(PaddlePlace::kCPU)); ZeroCopyTensorAssignData(data_tensor, one_batch.rnn_link_data); ZeroCopyTensorAssignData(week_tensor, one_batch.rnn_week_datas); ZeroCopyTensorAssignData(minute_tensor, one_batch.rnn_minute_datas); } void SetConfig(AnalysisConfig *cfg) { cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param"); cfg->DisableGpu(); cfg->SwitchSpecifyInputNames(); cfg->SwitchIrOptim(); } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; for (int bid = 0; bid < epoch; ++bid) { PrepareInputs(&input_slots, &data, FLAGS_batch_size); (*inputs).emplace_back(input_slots); } } // Easy for profiling independently. TEST(Analyzer_rnn1, profile) { contrib::AnalysisConfig cfg; SetConfig(&cfg); cfg.DisableGpu(); cfg.SwitchIrDebug(); std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); } // Check the fuse status TEST(Analyzer_rnn1, fuse_statis) { contrib::AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis( static_cast(predictor.get()), &num_ops); ASSERT_TRUE(fuse_statis.count("fc_fuse")); EXPECT_EQ(fuse_statis.at("fc_fuse"), 1); EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1); EXPECT_EQ(num_ops, 13); // After graph optimization, only 13 operators exists. } // Compare result of NativeConfig and AnalysisConfig TEST(Analyzer_rnn1, compare) { contrib::AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } // Compare Deterministic result TEST(Analyzer_rnn1, compare_determine) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareDeterministic(reinterpret_cast(&cfg), input_slots_all); } // Test Multi-Thread. TEST(Analyzer_rnn1, multi_thread) { contrib::AnalysisConfig cfg; SetConfig(&cfg); std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, 2 /* multi_thread */); } // Validate that the AnalysisPredictor + ZeroCopyTensor really works by testing // on the complex RNN1 model. TEST(Analyzer_rnn1, ZeroCopy) { AnalysisConfig config; SetConfig(&config); config.SwitchUseFeedFetchOps(false); PaddlePlace place; auto predictor = CreatePaddlePredictor(config); config.SwitchUseFeedFetchOps(true); auto native_predictor = CreatePaddlePredictor(config.ToNativeConfig()); config.SwitchUseFeedFetchOps( true); // the analysis predictor needs feed/fetch. auto analysis_predictor = CreatePaddlePredictor(config); #define NEW_TENSOR(name__) \ auto name__##_tensor = predictor->GetInputTensor(#name__); NEW_TENSOR(data_lod_attention); NEW_TENSOR(cell_init); NEW_TENSOR(data); NEW_TENSOR(week); NEW_TENSOR(minute); NEW_TENSOR(hidden_init); // Prepare data for AnalysisPredictor DataRecord data(FLAGS_infer_data, FLAGS_batch_size); PrepareZeroCopyInputs(data_lod_attention_tensor.get(), cell_init_tensor.get(), data_tensor.get(), hidden_init_tensor.get(), week_tensor.get(), minute_tensor.get(), &data, FLAGS_batch_size); // Prepare data for NativePredictor std::vector> native_inputs; SetInput(&native_inputs); std::vector native_outputs; std::vector analysis_outputs; auto output_tensor = predictor->GetOutputTensor("final_output.tmp_1"); // Run analysis predictor int num_ops; auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops); ASSERT_TRUE(fuse_statis.count("fc_fuse")); ASSERT_EQ(fuse_statis.at("fc_fuse"), 1); ASSERT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM ASSERT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1); ASSERT_EQ(num_ops, 13); // After graph optimization, only 13 operators exists. Timer timer; double total_time{0}; for (int i = 0; i < FLAGS_repeat; i++) { timer.tic(); predictor->ZeroCopyRun(); total_time += timer.toc(); } LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(*output_tensor); ASSERT_TRUE(native_predictor->Run(native_inputs.front(), &native_outputs)); LOG(INFO) << "native output " << DescribeTensor(native_outputs.front()); int output_size{0}; // this is the number of elements not memory size auto *zero_copy_data = output_tensor->data(&place, &output_size); auto *native_data = static_cast(native_outputs.front().data.data()); for (int i = 0; i < output_size; i++) { EXPECT_NEAR(zero_copy_data[i], native_data[i], 1e-3); } } TEST(Analyzer_rnn1, ZeroCopyMultiThread) { AnalysisConfig config; SetConfig(&config); config.SwitchUseFeedFetchOps(false); #define NEW_TENSOR(name__) \ auto name__##_tensor = predictor->GetInputTensor(#name__); auto base_predictor = CreatePaddlePredictor(config); double total_time_of_threads{0}; std::vector threads; for (int tid = 0; tid < FLAGS_num_threads; tid++) { threads.emplace_back([&, tid] { // To ensure the thread binding correctly, // please clone inside the threadpool. auto predictor = base_predictor->Clone(); NEW_TENSOR(data_lod_attention); NEW_TENSOR(cell_init); NEW_TENSOR(data); NEW_TENSOR(week); NEW_TENSOR(minute); NEW_TENSOR(hidden_init); // Prepare data for AnalysisPredictor DataRecord data(FLAGS_infer_data, FLAGS_batch_size); Timer timer; double total_time{0}; for (int i = 0; i < FLAGS_repeat; i++) { PrepareZeroCopyInputs(data_lod_attention_tensor.get(), cell_init_tensor.get(), data_tensor.get(), hidden_init_tensor.get(), week_tensor.get(), minute_tensor.get(), &data, FLAGS_batch_size); timer.tic(); predictor->ZeroCopyRun(); total_time += timer.toc(); } total_time_of_threads += total_time; LOG(INFO) << "thread time: " << total_time / FLAGS_repeat; }); } for (auto &t : threads) { t.join(); } LOG(INFO) << "average time: " << total_time_of_threads / FLAGS_num_threads / FLAGS_repeat; } } // namespace inference } // namespace paddle