/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/op_registry.h" #include "paddle/operators/nccl/nccl_gpu_common.h" #include namespace paddle { namespace operators { using framework::Tensor; template class NCCLTypeWrapper; template <> class NCCLTypeWrapper { public: static const ncclDataType_t type = ncclFloat; }; template <> class NCCLTypeWrapper { public: static const ncclDataType_t type = ncclDouble; }; template class NCCLAllReduceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto ins = ctx.MultiInput("X"); auto outs = ctx.MultiOutput("Out"); std::string reduction = ctx.Attr("reduction"); std::vector gpus = ctx.Attr>("gpus"); ncclRedOp_t op_type; if (reduction == "ncclSum") { op_type = ncclSum; } else if (reduction == "ncclProd") { op_type = ncclProd; } else if (reduction == "ncclMin") { op_type = ncclMin; } else if (reduction == "ncclMax") { op_type = ncclMax; } auto dev_ctx = static_cast(ctx.device_context()); platform::NCCLManager* m = platform::NCCLManager::Get(); auto* comm = m->GetCommunicator(gpus); comm->wg_.Add(1); auto stream = dev_ctx.stream(); // device id int gid = static_cast(ctx.GetPlace()).GetDeviceId(); int idx = gid % gpus.size(); comm->streams_[idx] = stream; for (size_t i = 0; i < ins.size(); ++i) { PADDLE_ENFORCE( ncclAllReduce(ins[i]->data(), outs[i]->mutable_data(), outs[i]->numel() * sizeof(T), NCCLTypeWrapper::type, op_type, comm->comms_[idx], comm->streams_[idx])); PADDLE_ENFORCE(cudaEventRecord(comm->events_[idx], comm->streams_[idx])); // wait finish PADDLE_ENFORCE( cudaStreamWaitEvent(comm->streams_[idx], comm->events_[idx], 0)); } comm->wg_.Done(); comm->wg_.Wait(); } }; } // namespace operators } // namespace paddle