// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/concat_kernel.h" #include "paddle/fluid/operators/strided_memcpy.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/complex.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/lod_utils.h" #include "paddle/phi/kernels/funcs/concat_and_split_functor.h" #include "paddle/phi/kernels/funcs/concat_funcs.h" namespace phi { template void ConcatKernel(const Context& dev_ctx, const std::vector& x, const Scalar& axis_scalar, DenseTensor* out) { int64_t axis = axis_scalar.to(); if (UNLIKELY(x[0]->dims().size() == 0)) { // for dims is 0 specially phi::DDim tmp_1dim, out_dims; out_dims[0] = x.size(); tmp_1dim[0] = 1; out->Resize(out_dims); dev_ctx.template Alloc(out); size_t output_offset = 0; for (auto* in : x) { if (in->numel() == 0UL) { continue; } auto in_stride = phi::stride_numel(tmp_1dim); auto out_stride = phi::stride_numel(out->dims()); paddle::operators::StridedNumelCopyWithAxis( dev_ctx, axis, out->data() + output_offset, out_stride, in->data(), in_stride, in_stride[axis]); output_offset += in_stride[axis]; } return; } axis = phi::funcs::ComputeAxis(axis, x[0]->dims().size()); std::vector x_dims; for (size_t i = 0; i < x.size(); ++i) { x_dims.push_back(x[i]->dims()); } phi::DDim out_dims = phi::funcs::ComputeAndCheckShape(true, x_dims, axis); out->Resize(out_dims); dev_ctx.template Alloc(out); // If axis is 0, the lod of the output is not the same as inputs. if (axis == 0 && x[0]->lod().size() > 0) { size_t lod_size_0 = x[0]->lod().size(); size_t lod_size = lod_size_0; for (size_t i = 1; i < x.size(); ++i) { if (x[i]->lod().size() > 0) { PADDLE_ENFORCE_EQ( x[i]->lod().size(), lod_size_0, phi::errors::Unimplemented( "The lod level of all input LoDTensors should be same. " "Maybe different lod level of input LoDTensors can concat," "it is not supported currently. The lod level of %dth input " "is %d and first input is %d.", i, x[i]->lod().size(), lod_size_0)); } else { lod_size = 0; break; } } if (lod_size) { auto* out_lod = out->mutable_lod(); for (size_t i = 1; i < x.size(); ++i) { auto in_lod = phi::ConvertToLengthBasedLoD(x[i]->lod()); phi::AppendLoD(out_lod, in_lod); } } } // Sometimes direct copies will be faster, this maybe need deeply analysis. if (axis == 0 && x.size() < 10) { size_t output_offset = 0; for (auto* in : x) { if (in->numel() == 0UL) { continue; } auto in_stride = phi::stride_numel(in->dims()); auto out_stride = phi::stride_numel(out->dims()); paddle::operators::StridedNumelCopyWithAxis( dev_ctx, axis, out->data() + output_offset, out_stride, in->data(), in_stride, in_stride[axis]); output_offset += in_stride[axis]; } } else { std::vector inputs; for (size_t j = 0; j < x.size(); ++j) { if (x[j]->numel() > 0) { inputs.push_back(*x[j]); } else { continue; } } phi::funcs::ConcatFunctor functor; functor(dev_ctx, inputs, axis, out); } } } // namespace phi PD_REGISTER_KERNEL(concat, GPU, ALL_LAYOUT, phi::ConcatKernel, float, double, bool, int64_t, int, uint8_t, int8_t, phi::dtype::float16, phi::dtype::bfloat16, phi::dtype::complex, phi::dtype::complex) {}