/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/collective/recv_v2_op.h" #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #include "paddle/fluid/platform/collective_helper.h" #include "paddle/fluid/platform/device/gpu/nccl_helper.h" #endif #include "paddle/fluid/distributed/collective/process_group.h" #include "paddle/phi/api/include/tensor.h" namespace paddle { namespace operators { #if (defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)) && \ NCCL_VERSION_CODE >= 2703 framework::DDim recv_shape_info(const platform::Place &place, const gpuStream_t &stream, platform::NCCLComm *comm, const int &peer, distributed::ProcessGroup *group) { if (!group) { PADDLE_ENFORCE_EQ((stream != nullptr && comm != nullptr), true, platform::errors::InvalidArgument( "NCCLComm and Stream should be provided if use NCCL " "to send the shape info.")); } paddle::experimental::DataType shape_dytpe = paddle::experimental::DataType::INT32; ncclDataType_t nccl_dtype = platform::ToNCCLDataType(framework::TransToProtoVarType(shape_dytpe)); // step1: recv the shape size phi::DenseTensor gpu_shape_size_tensor(shape_dytpe); if (!group) { gpu_shape_size_tensor.Resize({1}); gpu_shape_size_tensor.mutable_data(place, shape_dytpe); auto *gpu_data = gpu_shape_size_tensor.data(); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( gpu_data, 1, nccl_dtype, peer, comm->comm(), stream)); } // copy the shape size tensor to cpu phi::DenseTensor *cpu_shape_size_tensor = new phi::DenseTensor(shape_dytpe); cpu_shape_size_tensor->Resize({1}); cpu_shape_size_tensor->mutable_data(platform::CPUPlace(), shape_dytpe); if (group) { std::vector shape_size_tensor; shape_size_tensor.emplace_back(*cpu_shape_size_tensor); auto shape_size_task = group->Recv(shape_size_tensor, peer); } else { framework::TensorCopySync( gpu_shape_size_tensor, platform::CPUPlace(), cpu_shape_size_tensor); } auto *cpu_data = cpu_shape_size_tensor->data(); int shape_size = cpu_data[0]; VLOG(3) << "recv the shape size: " << shape_size << " from peer"; // step2: recv the shape phi::DenseTensor gpu_shape_tensor(shape_dytpe); if (!group) { gpu_shape_tensor.Resize({shape_size}); gpu_shape_tensor.mutable_data(place, shape_dytpe); auto *gpu_shape_data = gpu_shape_tensor.data(); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( gpu_shape_data, shape_size, nccl_dtype, peer, comm->comm(), stream)); } // copy the shape tensor to cpu phi::DenseTensor *cpu_shape_tensor = new phi::DenseTensor(shape_dytpe); cpu_shape_tensor->Resize({shape_size}); cpu_shape_tensor->mutable_data(platform::CPUPlace(), shape_dytpe); if (group) { std::vector shape_tensor; shape_tensor.emplace_back(*cpu_shape_tensor); auto shape_task = group->Recv(shape_tensor, peer); } else { framework::TensorCopySync( gpu_shape_tensor, platform::CPUPlace(), cpu_shape_tensor); } auto *cpu_shape_data = cpu_shape_tensor->data(); std::vector all_shape; for (int i = 0; i < shape_size; ++i) { all_shape.emplace_back(cpu_shape_data[i]); } framework::DDim new_dim; new_dim = new_dim.reshape(all_shape); VLOG(3) << "recv the shape: (" << new_dim << ") from peer"; return new_dim; } #endif template class RecvOpV2CUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { #if (defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)) && \ NCCL_VERSION_CODE >= 2703 int rid = ctx.Attr("ring_id"); bool dynamic_shape = ctx.Attr("dynamic_shape"); PADDLE_ENFORCE_GE( rid, 0, platform::errors::InvalidArgument( "The ring_id (%d) for recv_v2 op must be non-negative.", rid)); int peer = ctx.Attr("peer"); PADDLE_ENFORCE_GE( peer, 0, platform::errors::InvalidArgument( "The peer (%d) for recv_v2 op must be non-negative.", peer)); gpuStream_t stream = nullptr; auto place = ctx.GetPlace(); auto map = distributed::ProcessGroupMapFromGid::getInstance(); if (map->has(rid)) { // Use ProcessGroup distributed::ProcessGroup *pg = map->get(rid); std::vector out_tensor; auto out_shape = ctx.Attr>("out_shape"); auto out = ctx.Output("Out"); auto out_dims = out->dims(); if (dynamic_shape) { VLOG(3) << "recv_v2 will use dynamic shape with send_v2 for switch"; framework::DDim new_dim = recv_shape_info(ctx.GetPlace(), /* gpuStream_t */ nullptr, /* NCCLComm* */ nullptr, peer, pg); out->Resize(new_dim); out->mutable_data(new_dim, place); } else { out->mutable_data(out_dims, place); } out_tensor.emplace_back(*out); auto task = pg->Recv(out_tensor, peer); return; } auto comm = platform::NCCLCommContext::Instance().Get(rid, place); if (ctx.Attr("use_calc_stream")) { // should ExecutionContext for calc stream. stream = ctx.cuda_device_context().stream(); } else { stream = comm->stream(); } PADDLE_ENFORCE_LT( peer, comm->nranks(), platform::errors::InvalidArgument("The value of peer (%d) you set must " "be less than comm->nranks (%d).", peer, comm->nranks())); int data_type = ctx.Attr("dtype"); framework::proto::VarType::Type type = framework::proto::VarType::Type(data_type); ncclDataType_t dtype = platform::ToNCCLDataType(type); auto *out_var = ctx.OutputVar("Out"); if (out_var->IsType()) { PADDLE_ENFORCE_EQ( dynamic_shape, false, platform::errors::InvalidArgument("Dynamic shape for send/recv not " "support LoDTensorArray for now.")); auto out_array = out_var->GetMutable(); for (size_t idx = 0; idx < out_array->size(); ++idx) { VLOG(3) << "LodTensorArray: idx(" << idx << ")"; auto out = &out_array->at(idx); auto out_dims = out->dims(); out->mutable_data(out_dims, place, 0); auto numel = out->numel(); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( out->data(), numel, dtype, peer, comm->comm(), stream)); VLOG(3) << "rank " << comm->rank() << " recv " << phi::product(out_dims) << " from " << peer; } return; } auto out_shape = ctx.Attr>("out_shape"); auto out = ctx.Output("Out"); auto out_dims = out->dims(); auto numel = out->numel(); if (dynamic_shape) { VLOG(3) << "recv_v2 will use dynamic shape with send_v2"; framework::DDim new_dim = recv_shape_info(place, stream, comm, peer, /* ProcessGroup* */ nullptr); out->Resize(new_dim); numel = out->numel(); out->mutable_data(new_dim, place); } else { out->mutable_data(out_dims, place); } PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( out->data(), numel, dtype, peer, comm->comm(), stream)); VLOG(3) << "rank " << comm->rank() << " recv " << phi::product(out->dims()) << " from " << peer; #else PADDLE_THROW(platform::errors::Unavailable( "PaddlePaddle should be compiled with NCCL and " "NCCL version >= 2.7.3 is needed.")); #endif } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_CUDA_KERNEL(recv_v2, ops::RecvOpV2CUDAKernel, ops::RecvOpV2CUDAKernel, #if NCCL_VERSION_CODE >= 21000 ops::RecvOpV2CUDAKernel, #endif ops::RecvOpV2CUDAKernel, ops::RecvOpV2CUDAKernel, ops::RecvOpV2CUDAKernel, ops::RecvOpV2CUDAKernel);