/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifndef HL_GPU_GRU_CUH_ #define HL_GPU_GRU_CUH_ #ifdef __NVCC__ #include "paddle/utils/Logging.h" /* * threads(framePerBlock, batchPerBlock) * grid(frameBlocks, batchBlocks) */ template __global__ void KeGruForwardResetOutput(OpResetOutput opResetOutput, real *gateValue, real *resetOutputValue, real *prevOutputValue, int frameSize, int batchSize, hl_activation_mode_t active_gate) { const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; if (frameIdx >= frameSize) return; int batchIdx = 0; if (isBatch) { batchIdx = blockIdx.y * blockDim.y + threadIdx.y; if (batchIdx >= batchSize) return; gateValue += batchIdx * 3 * frameSize; resetOutputValue += batchIdx * frameSize; } real rPrevOut = 0; real rValueResetOutput; real rValueUpdateGate = gateValue[frameIdx + frameSize * 0]; real rValueResetGate = gateValue[frameIdx + frameSize * 1]; if (prevOutputValue) { if (isBatch) prevOutputValue += batchIdx * frameSize; rPrevOut = prevOutputValue[frameIdx]; } opResetOutput(rValueUpdateGate, rValueResetGate, rPrevOut, rValueResetOutput, hppl::gpu::forward[active_gate]); gateValue[frameIdx + frameSize * 0] = rValueUpdateGate; gateValue[frameIdx + frameSize * 1] = rValueResetGate; resetOutputValue[frameIdx] = rValueResetOutput; } /* * threads(framePerBlock, batchPerBlock) * grid(frameBlocks, batchBlocks) */ template __global__ void KeGruForwardFinalOutput(OpFinalOutput opFinalOutput, real *gateValue, real *prevOutputValue, real *outputValue, int frameSize, int batchSize, hl_activation_mode_t active_node) { const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; if (frameIdx >= frameSize) return; int batchIdx = 0; if (isBatch) { batchIdx = blockIdx.y * blockDim.y + threadIdx.y; if (batchIdx >= batchSize) return; gateValue += batchIdx * 3 * frameSize; outputValue += batchIdx * frameSize; } real rOutput; real rPrevOut = 0; real rValueUpdateGate = gateValue[frameIdx + frameSize * 0]; real rValueFrameState = gateValue[frameIdx + frameSize * 2]; if (prevOutputValue) { if (isBatch) prevOutputValue += batchIdx * frameSize; rPrevOut = prevOutputValue[frameIdx]; } opFinalOutput(rValueUpdateGate, rValueFrameState, rPrevOut, rOutput, hppl::gpu::forward[active_node]); gateValue[frameIdx + frameSize * 2] = rValueFrameState; outputValue[frameIdx] = rOutput; } template void hl_gpu_gru_forward(OpResetOutput opResetOutput, OpFinalOutput opFinalOutput, hl_gru_value value, int frameSize, int batchSize, hl_activation_mode_t active_node, hl_activation_mode_t active_gate) { dim3 threads; dim3 grid; if (batchSize == 1) { int framePerBlock = frameSize <= 1024 ? frameSize : 1024; int frameBlocks = (frameSize + 1024 - 1) / 1024; threads = dim3(framePerBlock, 1); grid = dim3(frameBlocks, 1); } else { threads = dim3(32, 32); grid = dim3((frameSize + 32 - 1) / 32, (batchSize + 32 - 1) / 32); } if (value.prevOutValue) { hl_matrix_mul(value.prevOutValue, HPPL_OP_N, value.gateWeight, HPPL_OP_N, value.gateValue, batchSize, 2*frameSize, frameSize, /*alpha = */ 1, /*beta = */ 1, frameSize, 2* frameSize, 3*frameSize); } if (batchSize == 1) { KeGruForwardResetOutput <<>>(opResetOutput, value.gateValue, value.resetOutputValue, value.prevOutValue, frameSize, batchSize, active_gate); } else { KeGruForwardResetOutput <<>>(opResetOutput, value.gateValue, value.resetOutputValue, value.prevOutValue, frameSize, batchSize, active_gate); } if (value.prevOutValue) { hl_matrix_mul(value.resetOutputValue, HPPL_OP_N, value.stateWeight, HPPL_OP_N, value.gateValue + 2*frameSize, batchSize, frameSize, frameSize, /*alpha = */ 1, /*beta = */ 1, frameSize, frameSize, 3*frameSize); } if (batchSize == 1) { KeGruForwardFinalOutput <<>>(opFinalOutput, value.gateValue, value.prevOutValue, value.outputValue, frameSize, batchSize, active_node); } else { KeGruForwardFinalOutput <<>>(opFinalOutput, value.gateValue, value.prevOutValue, value.outputValue, frameSize, batchSize, active_node); } CHECK_SYNC("hl_gpu_gru_forward failed"); } /* * threads(framePerBlock, batchPerBlock) * grid(frameBlocks, batchBlocks) */ template __global__ void KeGruBackwardStateGrad(OpStateGrad opStateGrad, real *gateValue, real *gateGrad, real *prevOutValue, real *prevOutGrad, real *outputGrad, int frameSize, int batchSize, hl_activation_mode_t active_node) { const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; if (frameIdx >= frameSize) return; int batchIdx = 0; if (isBatch) { batchIdx = blockIdx.y * blockDim.y + threadIdx.y; if (batchIdx >= batchSize) return; gateValue += batchIdx * 3 * frameSize; gateGrad += batchIdx * 3 * frameSize; outputGrad += batchIdx * frameSize; } real rUpdateGateGrad; real rFrameStateGrad; real rPrevOutValue = 0; real rPrevOutGrad = 0; real rUpdateGateValue = gateValue[frameIdx + frameSize * 0]; real rFrameStateValue = gateValue[frameIdx + frameSize * 2]; real rOutGrad = outputGrad[frameIdx]; if (prevOutValue && prevOutGrad) { if (isBatch) prevOutValue += batchIdx * frameSize; rPrevOutValue = prevOutValue[frameIdx]; if (isBatch) prevOutGrad += batchIdx * frameSize; rPrevOutGrad = prevOutGrad[frameIdx]; } opStateGrad(rUpdateGateValue, rUpdateGateGrad, rFrameStateValue, rFrameStateGrad, rPrevOutValue, rPrevOutGrad, rOutGrad, hppl::gpu::backward[active_node]); gateGrad[frameIdx + frameSize * 0] = rUpdateGateGrad; gateGrad[frameIdx + frameSize * 2] = rFrameStateGrad; if (prevOutGrad) { prevOutGrad[frameIdx] = rPrevOutGrad; } } /* * threads(framePerBlock, batchPerBlock) * grid(frameBlocks, batchBlocks) */ template __global__ void KeGruBackwardResetGrad(OpResetGrad opResetGrad, real *gateValue, real *gateGrad, real *prevOutValue, real *prevOutGrad, real *resetOutputGrad, int frameSize, int batchSize, hl_activation_mode_t active_gate) { const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; if (frameIdx >= frameSize) return; int batchIdx = 0; if (isBatch) { batchIdx = blockIdx.y * blockDim.y + threadIdx.y; if (batchIdx >= batchSize) return; gateValue += batchIdx * 3 * frameSize; gateGrad += batchIdx * 3 * frameSize; resetOutputGrad += batchIdx * frameSize; } real rResetGateGrad; real rPrevOutValue = 0; real rPrevOutGrad = 0; real rResetOutputGrad = 0; real rUpdateGateValue = gateValue[frameIdx + frameSize * 0]; real rUpdateGateGrad = gateGrad[frameIdx + frameSize * 0]; real rResetGateValue = gateValue[frameIdx + frameSize * 1]; if (prevOutValue && prevOutGrad) { if (isBatch) prevOutValue += batchIdx * frameSize; if (isBatch) prevOutGrad += batchIdx * frameSize; rPrevOutValue = prevOutValue[frameIdx]; rPrevOutGrad = prevOutGrad[frameIdx]; rResetOutputGrad = resetOutputGrad[frameIdx]; } opResetGrad(rUpdateGateValue, rUpdateGateGrad, rResetGateValue, rResetGateGrad, rPrevOutValue, rPrevOutGrad, rResetOutputGrad, hppl::gpu::backward[active_gate]); gateGrad[frameIdx + frameSize * 0] = rUpdateGateGrad; gateGrad[frameIdx + frameSize * 1] = rResetGateGrad; if (prevOutGrad) { prevOutGrad[frameIdx] = rPrevOutGrad; } } template void hl_gpu_gru_backward(OpStateGrad opStateGrad, OpResetGrad opResetGrad, hl_gru_value value, hl_gru_grad grad, int frameSize, int batchSize, hl_activation_mode_t active_node, hl_activation_mode_t active_gate) { dim3 threads; dim3 grid; if (batchSize == 1) { int framePerBlock = frameSize <= 1024 ? frameSize : 1024; int frameBlocks = (frameSize + 1024 - 1) / 1024; threads = dim3(framePerBlock, 1); grid = dim3(frameBlocks, 1); } else { threads = dim3(32, 32); grid = dim3((frameSize + 32 - 1) / 32, (batchSize + 32 - 1) / 32); } if (batchSize == 1) { KeGruBackwardStateGrad <<>>(opStateGrad, value.gateValue, grad.gateGrad, value.prevOutValue, grad.prevOutGrad, grad.outputGrad, frameSize, batchSize, active_node); } else { KeGruBackwardStateGrad <<>>(opStateGrad, value.gateValue, grad.gateGrad, value.prevOutValue, grad.prevOutGrad, grad.outputGrad, frameSize, batchSize, active_node); } if (value.prevOutValue && grad.prevOutGrad) { hl_matrix_mul(grad.gateGrad + 2*frameSize, HPPL_OP_N, value.stateWeight, HPPL_OP_T, grad.resetOutputGrad, batchSize, frameSize, frameSize, /*alpha = */ 1, /*beta = */ 0, 3*frameSize, frameSize, frameSize); if (grad.stateWeightGrad) { hl_matrix_mul(value.resetOutputValue, HPPL_OP_T, grad.gateGrad + 2*frameSize, HPPL_OP_N, grad.stateWeightGrad, frameSize, frameSize, batchSize, /*alpha = */ 1, /*beta = */ 1, frameSize, 3*frameSize, frameSize); } } if (batchSize == 1) { KeGruBackwardResetGrad <<>>(opResetGrad, value.gateValue, grad.gateGrad, value.prevOutValue, grad.prevOutGrad, grad.resetOutputGrad, frameSize, batchSize, active_gate); } else { KeGruBackwardResetGrad <<>>(opResetGrad, value.gateValue, grad.gateGrad, value.prevOutValue, grad.prevOutGrad, grad.resetOutputGrad, frameSize, batchSize, active_gate); } if (grad.prevOutGrad && value.prevOutValue) { hl_matrix_mul(grad.gateGrad, HPPL_OP_N, value.gateWeight, HPPL_OP_T, grad.prevOutGrad, batchSize, frameSize, 2*frameSize, /*alpha = */ 1, /*beta = */ 1, 3*frameSize, 2*frameSize, frameSize); if (grad.gateWeightGrad) { hl_matrix_mul(value.prevOutValue, HPPL_OP_T, grad.gateGrad, HPPL_OP_N, grad.gateWeightGrad, frameSize, 2*frameSize, batchSize, /*alpha = */ 1, /*beta = */ 1, frameSize, 3*frameSize, 2*frameSize); } } CHECK_SYNC("hl_gpu_gru_backward failed"); } #else template void hl_gpu_gru_forward(OpResetOutput opResetOutput, OpFinalOutput opFinalOutput, hl_gru_value value, int frameSize, int batchSize, hl_activation_mode_t active_node, hl_activation_mode_t active_gate) {} template void hl_gpu_gru_backward(OpStateGrad opStateGrad, OpResetGrad opResetGrad, hl_gru_value value, hl_gru_grad grad, int frameSize, int batchSize, hl_activation_mode_t active_node, hl_activation_mode_t active_gate) {} #endif #endif /* HL_GPU_GRU_CUH_ */