# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import random import paddle.utils.image_util as image_util from paddle.trainer.PyDataProvider2 import * # # {'img_size': 32, # 'settings': , # 'color': True, # 'mean_img_size': 32, # 'meta': './data/cifar-out/batches/batches.meta', # 'num_classes': 10, # 'file_list': ('./data/cifar-out/batches/train_batch_000',), # 'use_jpeg': True} def hook(settings, img_size, mean_img_size, num_classes, color, meta, use_jpeg, is_train, **kwargs): settings.mean_img_size = mean_img_size settings.img_size = img_size settings.num_classes = num_classes settings.color = color settings.is_train = is_train if settings.color: settings.img_raw_size = settings.img_size * settings.img_size * 3 else: settings.img_raw_size = settings.img_size * settings.img_size settings.meta_path = meta settings.use_jpeg = use_jpeg settings.img_mean = image_util.load_meta(settings.meta_path, settings.mean_img_size, settings.img_size, settings.color) settings.logger.info('Image size: %s', settings.img_size) settings.logger.info('Meta path: %s', settings.meta_path) settings.input_types = [ dense_vector(settings.img_raw_size), # image feature integer_value(settings.num_classes) ] # labels settings.logger.info('DataProvider Initialization finished') @provider(init_hook=hook, min_pool_size=0) def processData(settings, file_list): """ The main function for loading data. Load the batch, iterate all the images and labels in this batch. file_list: the batch file list. """ with open(file_list, 'r') as fdata: lines = [line.strip() for line in fdata] random.shuffle(lines) for file_name in lines: with io.open(file_name.strip(), 'rb') as file: data = cPickle.load(file) indexes = list(range(len(data['images']))) if settings.is_train: random.shuffle(indexes) for i in indexes: if settings.use_jpeg == 1: img = image_util.decode_jpeg(data['images'][i]) else: img = data['images'][i] img_feat = image_util.preprocess_img( img, settings.img_mean, settings.img_size, settings.is_train, settings.color) label = data['labels'][i] yield img_feat.astype('float32'), int(label)