# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.dygraph as dg from op_test import OpTest from paddle.fluid.framework import _test_eager_guard class TestTensorBackward(unittest.TestCase): def setUp(self): self._dtypes = ["float32", "float64"] self._places = [paddle.CPUPlace()] if paddle.is_compiled_with_cuda(): self._places.append(paddle.CUDAPlace(0)) def func_tensor_backward(self): for dtype in self._dtypes: x = np.random.random([2, 100]).astype(dtype) y = np.random.random([100, 2]).astype(dtype) z = np.matmul(x, y) grad = np.random.random(z.shape).astype(dtype) for place in self._places: with dg.guard(place): x_tensor = paddle.to_tensor(x, stop_gradient=False) y_tensor = paddle.to_tensor(y) z_tensor = paddle.matmul(x_tensor, y_tensor) grad_tensor = paddle.to_tensor(grad) z_tensor.backward(grad_tensor) x_grad = np.matmul(grad, y.T) self.assertTrue(np.allclose(x_grad, x_tensor.grad.numpy())) def test_tensor_backward(self): with _test_eager_guard(): self.func_tensor_backward() self.func_tensor_backward() class TestBackwardAPI(unittest.TestCase): def setUp(self): self._dtypes = ["float32", "float64"] self._places = [paddle.CPUPlace()] if paddle.is_compiled_with_cuda(): self._places.append(paddle.CUDAPlace(0)) def func_backward_api(self): for dtype in self._dtypes: x = np.random.random([2, 2]).astype(dtype) y = np.random.random([2, 2]).astype(dtype) z = np.matmul(x, y) grad = np.random.random(z.shape).astype(dtype) for place in self._places: with dg.guard(place): x_tensor = paddle.to_tensor(x, stop_gradient=False) y_tensor = paddle.to_tensor(y) z_tensor1 = paddle.matmul(x_tensor, y_tensor) z_tensor2 = paddle.matmul(x_tensor, y_tensor) grad_tensor = paddle.to_tensor(grad) paddle.autograd.backward([z_tensor1, z_tensor2], [grad_tensor, grad_tensor], True) x_grad = np.matmul(grad, y.T) self.assertTrue( np.allclose(x_grad * 2, x_tensor.grad.numpy())) def test_backward_api(self): with _test_eager_guard(): self.func_backward_api() self.func_backward_api() def func_backward_single_tensor(self): for dtype in self._dtypes: x = np.random.random([2, 2]).astype(dtype) y = np.random.random([2, 2]).astype(dtype) z = np.matmul(x, y) grad = np.random.random(z.shape).astype(dtype) for place in self._places: with dg.guard(place): x_tensor = paddle.to_tensor(x, stop_gradient=False) y_tensor = paddle.to_tensor(y) z_tensor1 = paddle.matmul(x_tensor, y_tensor) grad_tensor = paddle.to_tensor(grad) paddle.autograd.backward(z_tensor1, grad_tensor, True) x_grad = np.matmul(grad, y.T) self.assertTrue(np.allclose(x_grad, x_tensor.grad.numpy())) def test_backward_single_tensor(self): with _test_eager_guard(): self.func_backward_single_tensor() self.func_backward_single_tensor() def func_backward_none_grad_tensor(self): for dtype in self._dtypes: x = np.random.random([2, 2]).astype(dtype) y = np.random.random([2, 2]).astype(dtype) z = np.matmul(x, y) grad = np.ones(z.shape).astype(dtype) for place in self._places: with dg.guard(place): x_tensor = paddle.to_tensor(x, stop_gradient=False) y_tensor = paddle.to_tensor(y) z_tensor1 = paddle.matmul(x_tensor, y_tensor) paddle.autograd.backward(z_tensor1, None) x_grad = np.matmul(grad, y.T) self.assertTrue(np.allclose(x_grad, x_tensor.grad.numpy())) def test_backward_none_grad_tensor(self): with _test_eager_guard(): self.func_backward_none_grad_tensor() self.func_backward_none_grad_tensor() def func_backward_accumulator_with_init_grad(self): for dtype in self._dtypes: x = np.random.random([10, ]).astype(dtype) y_grad = np.random.random([10, ]).astype(dtype) z_grad = np.random.random([10, ]).astype(dtype) self._places = [paddle.CPUPlace()] for place in self._places: with dg.guard(place): x_tensor = paddle.to_tensor(x, stop_gradient=False) y_tensor = x_tensor**2 z_tensor = y_tensor**3 y_grad_tensor = paddle.to_tensor(y_grad) z_grad_tensor = paddle.to_tensor(z_grad) paddle.autograd.backward([y_tensor, z_tensor], [y_grad_tensor, z_grad_tensor]) y = x**2 z = x**3 x_grad = 2 * x * (y_grad + 3 * y * y * z_grad) self.assertTrue(np.allclose(x_grad, x_tensor.grad.numpy())) def test_backward_accumulator_with_init_grad(self): with _test_eager_guard(): self.func_backward_accumulator_with_init_grad() self.func_backward_accumulator_with_init_grad() if __name__ == '__main__': unittest.main()