# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import numpy as np import paddle import paddle.static as static import paddle.nn.functional as F from paddle.utils.cpp_extension import load, get_build_directory from paddle.utils.cpp_extension.extension_utils import run_cmd from utils import paddle_includes, extra_cc_args, extra_nvcc_args from paddle.fluid.framework import _test_eager_guard, _in_eager_mode # Because Windows don't use docker, the shared lib already exists in the # cache dir, it will not be compiled again unless the shared lib is removed. file = '{}\\custom_linear\\custom_linear.pyd'.format(get_build_directory()) if os.name == 'nt' and os.path.isfile(file): cmd = 'del {}'.format(file) run_cmd(cmd, True) custom_ops = load( name='custom_linear_jit', sources=['custom_linear_op.cc'], extra_include_paths=paddle_includes, # add for Coverage CI extra_cxx_cflags=extra_cc_args, # test for cc flags extra_cuda_cflags=extra_nvcc_args, # test for nvcc flags verbose=True) def linear_dynamic(func, dtype, np_x, np_weight, np_bias): paddle.set_device("cpu") x = paddle.to_tensor(np_x, dtype=dtype) weight = paddle.to_tensor(np_weight, dtype=dtype) bias = paddle.to_tensor(np_bias, dtype=dtype) out = func(x, weight, bias) return out.numpy() def linear_static(func, dtype, np_x, np_weight, np_bias): paddle.enable_static() paddle.set_device("cpu") with static.scope_guard(static.Scope()): with static.program_guard(static.Program()): x = static.data(name="x", shape=np_x.shape, dtype=dtype) weight = static.data( name="weight", shape=np_weight.shape, dtype=dtype) bias = static.data(name="bias", shape=np_bias.shape, dtype=dtype) out = func(x, weight, bias) exe = static.Executor() exe.run(static.default_startup_program()) out_v, = exe.run(static.default_main_program(), feed={ "x": np_x.astype(dtype), "weight": np_weight.astype(dtype), "bias": np_bias.astype(dtype) }, fetch_list=[out.name]) paddle.disable_static() return out_v class TestCustomLinearJit(unittest.TestCase): def setUp(self): self.dtypes = ['float32', 'float64'] self.np_x = np.random.random((3, 2)).astype("float32") self.np_weight = np.full([2, 4], fill_value=0.5, dtype="float32") self.np_bias = np.ones([4], dtype="float32") def check_output(self, out, pd_out, name): self.assertTrue( np.array_equal(out, pd_out), "custom op {}: {},\n paddle api {}: {}".format(name, out, name, pd_out)) def test_static(self): for dtype in self.dtypes: pten_out = linear_static(custom_ops.pten_linear, dtype, self.np_x, self.np_weight, self.np_bias) pd_out = linear_static(F.linear, dtype, self.np_x, self.np_weight, self.np_bias) self.check_output(pten_out, pd_out, "pten_out") def func_dynamic(self): for dtype in self.dtypes: pten_out = linear_dynamic(custom_ops.pten_linear, dtype, self.np_x, self.np_weight, self.np_bias) pd_out = linear_dynamic(F.linear, dtype, self.np_x, self.np_weight, self.np_bias) self.check_output(pten_out, pd_out, "pten_out") def test_dynamic(self): with _test_eager_guard(): self.func_dynamic() self.func_dynamic() if __name__ == "__main__": unittest.main()