# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..framework import Variable, unique_name from layer_function_generator import OpProtoHolder __all__ = ['monkey_patch_variable'] def monkey_patch_variable(): def unique_tmp_name(): return unique_name("tmp") def safe_get_dtype(var): try: dtype = var.dtype except: raise ValueError("Cannot get data type from %s", var.name) return dtype def create_tensor(block, value, dtype, shape): value = float(value) tmp_name = unique_tmp_name() var = block.create_var(name=tmp_name, shape=shape, dtype=dtype) block.append_op( type="fill_constant", outputs={'Out': [var]}, attrs={'dtype': var.dtype, 'shape': shape, 'value': value}) return var def create_scalar(block, value, dtype): return create_tensor(block, value, dtype, shape=[1]) def create_tensor_with_batchsize(ref_var, value, dtype): assert isinstance(ref_var, Variable) value = float(value) tmp_name = unique_tmp_name() var = ref_var.block.create_var(name=tmp_name, dtype=dtype) ref_var.block.append_op( type='fill_constant_batch_size_like', outputs={'Out': [var]}, inputs={'Input': [ref_var]}, attrs={'shape': ref_var.shape, 'value': value}) return var def astype(self, dtype): """ Cast a variable to a specified data type. NOTE: The variable must be a Tensor Args: self(Variable): The source variable dtype: The target dtype Returns: Variable with new dtype """ tmp_name = unique_tmp_name() out = self.block.create_var(name=tmp_name, dtype=dtype) self.block.append_op( type="cast", inputs={"X": [self]}, outputs={"Out": [out]}, attrs={"in_dtype": self.dtype, "out_dtype": out.dtype}) return out def _elemwise_method_creator_(method_name, op_type, reverse=False): def __impl__(self, other_var): lhs_dtype = safe_get_dtype(self) if not isinstance(other_var, Variable): if reverse: has_batch_size = False for elem in self.shape: if elem < 0: has_batch_size = True break if not has_batch_size: other_var = create_tensor( self.block, other_var, dtype=lhs_dtype, shape=self.shape) else: other_var = create_tensor_with_batchsize( self, other_var, lhs_dtype) else: # add fill_op to self.block other_var = create_scalar( self.block, value=other_var, dtype=lhs_dtype) rhs_dtype = safe_get_dtype(other_var) if lhs_dtype != rhs_dtype: other_var = astype(other_var, lhs_dtype) if reverse: tmp = self self = other_var other_var = tmp tmp_name = unique_tmp_name() out = self.block.create_var(name=tmp_name, dtype=lhs_dtype) self.block.append_op( type=op_type, inputs={'X': [self], 'Y': [other_var]}, outputs={'Out': out}) return out comment = OpProtoHolder.instance().get_op_proto(op_type).comment __impl__.__doc__ = """ {0} Args: self(Variable): left hand variable other_var(Variable|float|int): right hand variable Returns: Variable """.format(comment) __impl__.__name__ = method_name return __impl__ # inject methods for method_name, op_type, reverse in ( ("__add__", "elementwise_add", False), # a+b == b+a. Do not need to reverse explicitly ("__radd__", "elementwise_add", False), ("__sub__", "elementwise_sub", False), ("__rsub__", "elementwise_sub", True), ("__mul__", "elementwise_mul", False), # a*b == b*a. Do not need to reverse explicitly ("__rmul__", "elementwise_mul", False), ("__div__", "elementwise_div", False), ("__rdiv__", "elementwise_div", True), ("__pow__", "elementwise_pow", False), ("__rpow__", "elementwise_pow", True)): setattr(Variable, method_name, _elemwise_method_creator_(method_name, op_type, reverse)) Variable.astype = astype