/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/amp/fp16_type_traits.h" #include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h" #include "paddle/fluid/platform/bfloat16.h" #include "paddle/fluid/platform/device/gpu/gpu_device_function.h" #include "paddle/phi/kernels/funcs/activation_functor.h" namespace paddle { namespace operators { template struct CudaSigmoidFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType one = static_cast(1.0f); // sigmoid(x) = 1 / (1 + exp(-x)) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); return static_cast(one / (one + exp(-x))); } }; template struct CudaSigmoidGradFunctor : public BaseActivationFunctor { T one = static_cast(1.0f); // dx = dout * out * (1 - out) __device__ __forceinline__ T operator()(const T dout, const T out) const { return dout * out * (one - out); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepOut; } }; template struct CudaLogSigmoidFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType zero = static_cast(0.0f); // logsigmoid(x) = log(1 / (1 + exp(-x))) // For numerical stability, // logsigmoid(x) = // - (max(-x, 0) + log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); MPType temp = x > zero ? zero : -x; return static_cast(-temp - log(exp(-temp) + exp(-x - temp))); } }; template struct CudaLogSigmoidGradFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType zero = static_cast(0.0f); // dx = dout * exp(-x) / (1 + exp(-x)) // For numerical stability: // dx = dout * exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) + exp(-x - max(-x, // 0))) __device__ __forceinline__ T operator()(const T arg_dout, const T arg_x) const { MPType dout = static_cast(arg_dout); MPType x = static_cast(arg_x); MPType temp1 = x > zero ? zero : -x; MPType temp2 = exp(-x - temp1); return static_cast(dout * (temp2 / (exp(-temp1) + temp2))); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaCeilFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; // ceil(x) = ceil(x) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); return static_cast(ceil(x)); } }; template struct CudaFloorFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; // floor(x) = floor(x) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); return static_cast(floor(x)); } }; template struct CudaRoundFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; // round(x) = round(x) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); return static_cast(round(x)); } }; // GradFunctor for ceil, floor and round template struct CudaZeroGradFunctor : public BaseActivationFunctor { __device__ __forceinline__ T operator()(const T x) const { return static_cast(0.0f); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kNoDeps; } }; template struct CudaReciprocalGradFunctor : public BaseActivationFunctor { // dx = -dout * out^2 __device__ __forceinline__ T operator()(const T dout, const T out) const { return -dout * out * out; } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepOut; } }; template struct CudaLogFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; // log(x) = log(x) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); return static_cast(log(x)); } }; template struct CudaLogGradFunctor : public BaseActivationFunctor { // dx = dout / x __device__ __forceinline__ T operator()(const T dout, const T x) const { return dout / x; } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaSquareGradFunctor : public BaseActivationFunctor { T two = static_cast(2.0f); // dx = dout * 2 * x __device__ __forceinline__ T operator()(const T dout, const T x) const { return dout * two * x; } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaSqrtGradFunctor : public BaseActivationFunctor { T one_half = static_cast(0.5f); // dx = dout * 0.5 / out __device__ __forceinline__ T operator()(const T dout, const T out) const { return one_half * dout / out; } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepOut; } }; template struct CudaRsqrtGradFunctor : public BaseActivationFunctor { T minus_one_half = static_cast(-0.5f); // dx = -0.5 * dout * out^3 __device__ __forceinline__ T operator()(const T dout, const T out) const { return minus_one_half * dout * out * out * out; } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepOut; } }; template struct CudaLog1pFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType one = static_cast(1.0f); // log1p(x) = log(1 + x) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); return static_cast(log(one + x)); } }; template struct CudaLog1pGradFunctor : public BaseActivationFunctor { T one = static_cast(1.0f); // dx = dout / (1 + x) __device__ __forceinline__ T operator()(const T dout, const T x) const { return dout / (one + x); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaLog2Functor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; // log2(x) = log2(x) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); return static_cast(log2(x)); } }; template struct CudaLog2GradFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; T log_two = static_cast(log(static_cast(2.0f))); // dx = dout / (x * log(2)) __device__ __forceinline__ T operator()(const T dout, const T x) const { return dout / (x * log_two); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaLog10Functor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; // log10(x) = log10(x) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); return static_cast(log10(x)); } }; template struct CudaLog10GradFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; T log_ten = static_cast(log(static_cast(10.0f))); // dx = dout / (x * log(10)) __device__ __forceinline__ T operator()(const T dout, const T x) const { return dout / (x * log_ten); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaSoftReluFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType one = static_cast(1.0f); float threshold; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } // soft_relu(x) = log(1 + exp(max(min(x, threshold), -threshold))) // threshold should not be negative __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); MPType t = static_cast(threshold); MPType temp_min = x < t ? x : t; MPType temp_max = temp_min > -t ? temp_min : -t; return static_cast(log(one + exp(temp_max))); } }; template struct CudaSoftReluGradFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType one = static_cast(1.0f); float threshold; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } // dx = (out > -threshold && out < threshold) ? dout * (1 - exp(-out)) : 0 // threshold should not be negative __device__ __forceinline__ T operator()(const T arg_dout, const T arg_out) const { MPType dout = static_cast(arg_dout); MPType out = static_cast(arg_out); MPType t = static_cast(threshold); return (out > -t && out < t) ? static_cast(dout * (one - exp(-out))) : static_cast(0.0f); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepOut; } }; template struct CudaSTanhGradFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType one = static_cast(1.0f); float scale_a; float scale_b; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"scale_a", &scale_a}, {"scale_b", &scale_b}}; } // dx = dout * a * b * (1 - tanh(a * x) * tanh(a * x)) __device__ __forceinline__ T operator()(const T arg_dout, const T arg_x) const { MPType dout = static_cast(arg_dout); MPType x = static_cast(arg_x); MPType a = static_cast(scale_a); MPType b = static_cast(scale_b); MPType temp = tanh(a * x); return static_cast(dout * a * b * (one - temp * temp)); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaSoftplusGradFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType one = static_cast(1.0f); float beta; float threshold; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"beta", &beta}, {"threshold", &threshold}}; } // dx = x * beta > threshold ? dout : dout / (1 + exp(-beta * x)) __device__ __forceinline__ T operator()(const T arg_dout, const T arg_x) const { MPType dout = static_cast(arg_dout); MPType x = static_cast(arg_x); MPType b = static_cast(beta); MPType t = static_cast(threshold); MPType x_beta = x * beta; return x_beta > t ? arg_dout : static_cast(dout / (one + exp(-x_beta))); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaSoftsignGradFunctor : public BaseActivationFunctor { T one = static_cast(1.0f); // dx = dout / (1 + abs(x))^2 __device__ __forceinline__ T operator()(const T dout, const T x) const { T temp = one + abs(x); return dout / (temp * temp); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaRelu6Functor : public BaseActivationFunctor { T zero = static_cast(0.0f); float threshold; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } // relu6(x) = min(max(0, x), 6) __device__ __forceinline__ T operator()(const T x) const { T t = static_cast(threshold); return x <= zero ? zero : (x < t ? x : t); } }; template struct CudaRelu6GradFunctor : public BaseActivationFunctor { T zero = static_cast(0.0f); float threshold; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } // dx = (out > 0 && out < t) ? dout : 0 __device__ __forceinline__ T operator()(const T dout, const T out) const { T t = static_cast(threshold); return (out > zero && out < t) ? dout : zero; } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepOut; } }; template struct CudaHardSigmoidFunctor : public BaseActivationFunctor { T zero = static_cast(0.0f); T one = static_cast(1.0f); float slope; float offset; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"slope", &slope}, {"offset", &offset}}; } // hard_sigmoid(x) = 0, when x <= -3 // 1, when x >= 3 // x * slope + offset, otherwise __device__ __forceinline__ T operator()(const T x) const { T temp = x * static_cast(slope) + static_cast(offset); T temp_max = temp > zero ? temp : zero; T temp_min = temp_max < one ? temp_max : one; return temp_min; } }; template struct CudaHardSigmoidGradFunctor : public BaseActivationFunctor { T zero = static_cast(0.0f); T one = static_cast(1.0f); float slope; float offset; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"slope", &slope}, {"offset", &offset}}; } // dx = (out > 0 && out < 1) ? dout * slope : 0 __device__ __forceinline__ T operator()(const T dout, const T out) const { return (out > zero && out < one) ? dout * static_cast(slope) : zero; } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepOut; } }; template struct CudaSwishFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType one = static_cast(1.0f); float beta; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"beta", &beta}}; } // swish(x) = x / (1 + exp(-beta * x)) __device__ __forceinline__ T operator()(const T arg_x) const { MPType x = static_cast(arg_x); MPType b = static_cast(beta); return static_cast(x / (one + exp(-b * x))); } }; template struct CudaSwishGradFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType one = static_cast(1.0f); float beta; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"beta", &beta}}; } // dx = dout * (1 + exp(-b * x) + b * x * exp(-b * x) / (1 + exp(-b * x))^2) __device__ __forceinline__ T operator()(const T arg_dout, const T arg_x) const { MPType dout = static_cast(arg_dout); MPType x = static_cast(arg_x); MPType b = static_cast(beta); MPType temp1 = one / (one + exp(-b * x)); MPType out = x * temp1; MPType temp2 = b * out; MPType temp3 = temp1 * (one - temp2); return static_cast(dout * (temp2 + temp3)); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaMishGradFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType one = static_cast(1.0f); float threshold; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } // dx = dout * (tanh(sp) + x * (1 - tanh(sp) ** 2) * (1 - exp(-sp))) // sp = softplus(x) // Inputs: args[0], the input dout // args[1], the input x __device__ __forceinline__ T operator()(const T arg_dout, const T arg_x) const { MPType dout = static_cast(arg_dout); MPType x = static_cast(arg_x); MPType sp = (x > static_cast(threshold)) ? x : log(one + exp(x)); MPType gsp = (x > static_cast(threshold)) ? one : one / (one + exp(-x)); MPType tsp = tanh(sp); return static_cast(dout * (tsp + x * (one - tsp * tsp) * gsp)); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaHardSwishFunctor : public BaseActivationFunctor { T zero = static_cast(0.0f); float threshold; float scale; float offset; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}}; } // hard_swish(x) = 0, when x <= -offset // x , when x >= threshold - offset // x * (x + offset) / scale, otherwise // threshold = scale = 6, offset = 3 by default __device__ __forceinline__ T operator()(const T x) const { T t = static_cast(threshold); T temp = x + static_cast(offset); T temp_max = temp > zero ? temp : zero; T temp_min = temp_max < t ? temp_max : t; return temp_min * x / static_cast(scale); } }; template struct CudaHardSwishGradFunctor : public BaseActivationFunctor { T zero = static_cast(0.0f); T one = static_cast(1.0f); T two = static_cast(2.0f); float threshold; float scale; float offset; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}}; } // dx = 0, when x <= -offset // dout , when x >= threshold - offset // dout * (2 * x / scale + offset / scale), otherwise // threshold = scale = 6, offset = 3 by default __device__ __forceinline__ T operator()(const T dout, const T x) const { T o = static_cast(offset); T s = static_cast(scale); T temp1 = static_cast(x + o > zero); T temp2 = static_cast(x + o < static_cast(threshold)); return dout * (temp1 * temp2 * (two * x + o) / s + one - temp2); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template struct CudaCELUFunctor : public BaseActivationFunctor { using CT = typename details::MPTypeTrait::Type; CT zero = static_cast(0.0f); CT one = static_cast(1.0f); float alpha; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"alpha", &alpha}}; } // celu(x) = max(0, x) + min(0, alpha * (exp(x/alpha) - 1)) __device__ __forceinline__ T operator()(const T arg_x) const { CT x = static_cast(arg_x); CT temp = static_cast(alpha) * (exp(x / static_cast(alpha)) - one); CT res = (x > zero ? x : zero) + (temp > zero ? zero : temp); return static_cast(res); } }; template struct CudaCELUGradFunctor : public BaseActivationFunctor { using MPType = typename details::MPTypeTrait::Type; MPType zero = static_cast(0.0f); MPType one = static_cast(1.0f); float alpha; typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"alpha", &alpha}}; } // dx = dout, if alpha > 0 and x > 0 // dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0 // dx = dout , if alpha < 0 and x > 0 // dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0 __device__ __forceinline__ T operator()(const T arg_dout, const T arg_x) const { MPType dout = static_cast(arg_dout); MPType x = static_cast(arg_x); MPType a = static_cast(alpha); MPType temp_a_pos = static_cast(alpha > 0.0f); MPType temp_a_neg = static_cast(alpha <= 0.0f); MPType temp_x_pos = static_cast(x > zero); MPType temp_x_neg = static_cast(x <= zero); return static_cast( dout * (temp_a_pos * temp_x_pos + temp_a_pos * temp_x_neg * exp(x / a) + temp_a_neg * temp_x_pos + exp(x / a) * temp_a_neg * temp_x_neg)); } static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; } }; template class ActivationCudaKernel : public framework::OpKernel { public: using T = typename Functor::ELEMENT_TYPE; void Compute(const framework::ExecutionContext& ctx) const override { const framework::Tensor* x = nullptr; framework::Tensor* out = nullptr; ExtractActivationTensor(ctx, &x, &out); out->mutable_data(ctx.GetPlace()); auto& dev_ctx = ctx.template device_context(); std::vector ins = {x}; std::vector outs = {out}; auto functor = Functor(); auto attrs = functor.GetAttrs(); for (auto& attr : attrs) { *attr.second = ctx.Attr(attr.first); } paddle::operators::LaunchSameDimsElementwiseCudaKernel(dev_ctx, ins, &outs, functor); } }; template class ActivationGradCudaKernel : public framework::OpKernel { public: using T = typename Functor::ELEMENT_TYPE; void Compute(const framework::ExecutionContext& ctx) const override { const framework::Tensor *x, *out, *d_out; framework::Tensor* d_x = nullptr; x = out = d_out = nullptr; ExtractActivationGradTensor(ctx, &x, &out, &d_out, &d_x); d_x->mutable_data(ctx.GetPlace()); auto& dev_ctx = ctx.template device_context(); auto functor = Functor(); auto attrs = functor.GetAttrs(); for (auto& attr : attrs) { *attr.second = ctx.Attr(attr.first); } std::vector ins = {d_out}; std::vector outs = {d_x}; if (static_cast(Functor::FwdDeps()) == static_cast(ActBwdOpFwdDeps::kDepOut)) { // Only need forward output Out ins.push_back(out); paddle::operators::LaunchSameDimsElementwiseCudaKernel(dev_ctx, ins, &outs, functor); } else if (static_cast(Functor::FwdDeps()) == static_cast(ActBwdOpFwdDeps::kDepX)) { // Only need forward input X ins.push_back(x); paddle::operators::LaunchSameDimsElementwiseCudaKernel(dev_ctx, ins, &outs, functor); } else { paddle::operators::LaunchSameDimsElementwiseCudaKernel(dev_ctx, ins, &outs, functor); } } }; USE_PHI_FUNCTOR(CudaCos) USE_PHI_FUNCTOR(CudaTan) USE_PHI_FUNCTOR(CudaAcos) USE_PHI_FUNCTOR(CudaSin) USE_PHI_FUNCTOR(CudaAsin) USE_PHI_FUNCTOR(CudaAtan) USE_PHI_FUNCTOR(CudaSinh) USE_PHI_FUNCTOR(CudaCosh) USE_PHI_FUNCTOR(CudaAsinh) USE_PHI_FUNCTOR(CudaAcosh) USE_PHI_FUNCTOR(CudaAtanh) USE_PHI_FUNCTOR(CudaTanh) USE_PHI_FUNCTOR(CudaBRelu) USE_PHI_FUNCTOR(CudaLeakyRelu) USE_PHI_FUNCTOR(CudaThresholdedRelu) USE_PHI_FUNCTOR(CudaHardShrink) USE_PHI_FUNCTOR(CudaSoftShrink) USE_PHI_FUNCTOR(CudaTanhShrink) USE_PHI_FUNCTOR(CudaSilu) USE_PHI_FUNCTOR(CudaELU) template using CudaELUGradNegativeAlphaFunctor = phi::funcs::CudaELUGradNegativeAlphaFunctor; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; #define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, op_name, functor, \ grad_functor) \ REGISTER_OP_CUDA_KERNEL( \ act_type, ops::ActivationCudaKernel>, \ ops::ActivationCudaKernel>, \ ops::ActivationCudaKernel>, \ ops::ActivationCudaKernel>); \ REGISTER_OP_CUDA_KERNEL( \ act_type##_grad, \ ops::ActivationGradCudaKernel>, \ ops::ActivationGradCudaKernel>, \ ops::ActivationGradCudaKernel>, \ ops::ActivationGradCudaKernel>); #define REGISTER_ACTIVATION_CUDA_KERNEL_INT(act_type, op_name, functor, \ grad_functor) \ REGISTER_OP_CUDA_KERNEL( \ act_type, ops::ActivationCudaKernel>, \ ops::ActivationCudaKernel>, \ ops::ActivationCudaKernel>, \ ops::ActivationCudaKernel>, \ ops::ActivationCudaKernel>, \ ops::ActivationCudaKernel>); \ REGISTER_OP_CUDA_KERNEL( \ act_type##_grad, \ ops::ActivationGradCudaKernel>, \ ops::ActivationGradCudaKernel>, \ ops::ActivationGradCudaKernel>, \ ops::ActivationGradCudaKernel>, \ ops::ActivationGradCudaKernel>, \ ops::ActivationGradCudaKernel>); /* ========================================================================== */ /* ======================== celu register ============================ */ REGISTER_ACTIVATION_CUDA_KERNEL(celu, CELU, CudaCELUFunctor, CudaCELUGradFunctor); REGISTER_OP_CUDA_KERNEL( celu_grad_grad, ops::CELUDoubleGradKernel>, ops::CELUDoubleGradKernel>, ops::CELUDoubleGradKernel>); /* ========================================================================== */ /* =========================== sigmoid register ============================ */ REGISTER_ACTIVATION_CUDA_KERNEL(sigmoid, Sigmoid, CudaSigmoidFunctor, CudaSigmoidGradFunctor); REGISTER_OP_CUDA_KERNEL( sigmoid_grad_grad, ops::SigmoidDoubleGradKernel>, ops::SigmoidDoubleGradKernel>, ops::SigmoidDoubleGradKernel>, ops::SigmoidDoubleGradKernel>); REGISTER_OP_CUDA_KERNEL( sigmoid_triple_grad, ops::SigmoidTripleGradKernel>, ops::SigmoidTripleGradKernel>, ops::SigmoidTripleGradKernel>, ops::SigmoidTripleGradKernel< plat::CUDADeviceContext, ops::SigmoidTripleGradFunctor>); /* ========================================================================== */ /* =========================== sqrt register ============================= */ REGISTER_ACTIVATION_CUDA_KERNEL(sqrt, Sqrt, CudaSqrtFunctor, CudaSqrtGradFunctor); REGISTER_OP_CUDA_KERNEL( sqrt_grad_grad, ops::SqrtDoubleGradKernel>, ops::SqrtDoubleGradKernel>, ops::SqrtDoubleGradKernel>, ops::SqrtDoubleGradKernel>); /* ========================================================================== */ /* =========================== rsqrt register ============================= */ REGISTER_ACTIVATION_CUDA_KERNEL(rsqrt, Rsqrt, CudaRsqrtFunctor, CudaRsqrtGradFunctor); REGISTER_OP_CUDA_KERNEL( rsqrt_grad_grad, ops::RsqrtDoubleGradKernel>, ops::RsqrtDoubleGradKernel>, ops::RsqrtDoubleGradKernel>); /* ========================================================================== */ /* =========================== square register ============================ */ REGISTER_ACTIVATION_CUDA_KERNEL_INT(square, Square, CudaSquareFunctor, CudaSquareGradFunctor); REGISTER_OP_CUDA_KERNEL( square_grad_grad, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>); /* ========================================================================== */ /* ========================== pow register ============================ */ REGISTER_OP_CUDA_KERNEL( pow, ops::PowKernel>, ops::PowKernel>, ops::PowKernel>, ops::PowKernel>, ops::PowKernel>); REGISTER_OP_CUDA_KERNEL( pow_grad, ops::PowGradKernel>, ops::PowGradKernel>, ops::PowGradKernel>, ops::PowGradKernel>, ops::PowGradKernel>); /* ========================================================================== */ /* ========================== logit register ============================ */ namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( logit_grad, ops::LogitGradKernel, ops::LogitGradKernel, ops::LogitGradKernel); /* ========================================================================== */ /* ========================== exp register ============================ */ REGISTER_OP_CUDA_KERNEL( exp, ops::ActivationCudaKernel>, ops::ActivationCudaKernel>, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationCudaKernel>); REGISTER_OP_CUDA_KERNEL( exp_grad, ops::ActivationGradCudaKernel>, ops::ActivationGradCudaKernel>, ops::ActivationGradCudaKernel>, ops::ActivationGradCudaKernel>, ops::ActivationGradCudaKernel>); /* ========================================================================== */ /* ========================== expm1 register ============================ */ REGISTER_OP_CUDA_KERNEL( expm1, ops::ActivationCudaKernel>, ops::ActivationCudaKernel>, ops::ActivationCudaKernel>); REGISTER_OP_CUDA_KERNEL( expm1_grad, ops::ActivationGradCudaKernel>, ops::ActivationGradCudaKernel>, ops::ActivationGradCudaKernel>); /* ========================================================================== */ /* ========================== Log register ==================================*/ REGISTER_ACTIVATION_CUDA_KERNEL(log, Log, CudaLogFunctor, CudaLogGradFunctor); REGISTER_OP_CUDA_KERNEL( log_grad_grad, ops::LogDoubleGradKernel>, ops::LogDoubleGradKernel>, ops::LogDoubleGradKernel>); /* ========================================================================== */ #define FOR_EACH_ACTIVATION_CUDA_OP(__macro) \ __macro(logsigmoid, LogSigmoid, CudaLogSigmoidFunctor, \ CudaLogSigmoidGradFunctor); \ __macro(softshrink, SoftShrink, CudaSoftShrinkFunctor, \ CudaSoftShrinkGradFunctor); \ __macro(ceil, Ceil, CudaCeilFunctor, CudaZeroGradFunctor); \ __macro(floor, Floor, CudaFloorFunctor, CudaZeroGradFunctor); \ __macro(round, Round, CudaRoundFunctor, CudaZeroGradFunctor); \ __macro(reciprocal, Reciprocal, CudaReciprocalFunctor, \ CudaReciprocalGradFunctor); \ __macro(log1p, Log1p, CudaLog1pFunctor, CudaLog1pGradFunctor); \ __macro(log2, Log2, CudaLog2Functor, CudaLog2GradFunctor); \ __macro(log10, Log10, CudaLog10Functor, CudaLog10GradFunctor); \ __macro(soft_relu, SoftRelu, CudaSoftReluFunctor, CudaSoftReluGradFunctor); \ __macro(stanh, STanh, CudaSTanhFunctor, CudaSTanhGradFunctor); \ __macro(softplus, Softplus, CudaSoftplusFunctor, CudaSoftplusGradFunctor); \ __macro(softsign, Softsign, CudaSoftsignFunctor, CudaSoftsignGradFunctor); \ __macro(relu6, Relu6, CudaRelu6Functor, CudaRelu6GradFunctor); \ __macro(tanh_shrink, TanhShrink, CudaTanhShrinkFunctor, \ CudaTanhShrinkGradFunctor); \ __macro(hard_shrink, HardShrink, CudaHardShrinkFunctor, \ CudaHardShrinkGradFunctor); \ __macro(hard_sigmoid, HardSigmoid, CudaHardSigmoidFunctor, \ CudaHardSigmoidGradFunctor); \ __macro(swish, Swish, CudaSwishFunctor, CudaSwishGradFunctor); \ __macro(mish, Mish, CudaMishFunctor, CudaMishGradFunctor); \ __macro(hard_swish, HardSwish, CudaHardSwishFunctor, \ CudaHardSwishGradFunctor); FOR_EACH_ACTIVATION_CUDA_OP(REGISTER_ACTIVATION_CUDA_KERNEL) #ifdef PADDLE_WITH_XPU_KP REGISTER_OP_KERNEL( brelu, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( brelu_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(ceil, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( ceil_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(celu, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( celu_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(elu, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( elu_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(exp, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( exp_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(floor, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( floor_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL( hard_shrink, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( hard_shrink_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL( hard_sigmoid, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( hard_sigmoid_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(hard_swish, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( hard_swish_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL( leaky_relu, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( leaky_relu_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(log, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( log_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(log1p, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( log1p_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL( logsigmoid, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( logsigmoid_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL( reciprocal, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( reciprocal_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL( relu, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( relu_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(relu6, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( relu6_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(sigmoid, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( sigmoid_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(silu, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( silu_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(soft_relu, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( soft_relu_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(softplus, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( softplus_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL( softshrink, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( softshrink_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(softsign, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( softsign_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(sqrt, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( sqrt_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(square, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( square_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL(swish, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( swish_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); REGISTER_OP_KERNEL( thresholded_relu, KP, plat::XPUPlace, ops::ActivationCudaKernel>); REGISTER_OP_KERNEL( thresholded_relu_grad, KP, plat::XPUPlace, ops::ActivationGradCudaKernel>); #endif // PADDLE_WITH_XPU_KP