# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import six import os import logging from collections import defaultdict import paddle from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table from paddle.fluid.framework import Program, Variable, Parameter, name_scope, default_main_program, default_startup_program, device_guard from . import framework from . import layers from . import unique_name from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops, ClipGradByGlobalNorm from .framework import program_guard from .initializer import Constant from .layer_helper import LayerHelper from .layers import ops from .dygraph import base as imperative_base from .dygraph import no_grad from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay from paddle.fluid import core from paddle.fluid.layers import tensor from functools import reduce from functools import cmp_to_key from .wrapped_decorator import signature_safe_contextmanager from .. import compat as cpt import warnings from paddle import _C_ops from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode __all__ = [ 'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad', 'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta', 'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum', 'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage', 'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer' ] class Optimizer(object): """Optimizer Base class. Define the common interface of an optimizer. User should not use this class directly, but need to use one of it's implementation. """ @imperative_base.no_grad def __init__(self, learning_rate, parameter_list=None, regularization=None, grad_clip=None, flatten_param_grads=False, align_size=-1, name=None): """ Args: flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads. If true, the parameters and gradients will be coalesce to contiguous mempry, and the grad_clip ops / optimizer ops will be fuse to one operator. """ # Because of the loop import, so place it in the function body from paddle.optimizer.lr import LRScheduler self._parameter_list = list( parameter_list) if parameter_list is not None else None self._name = name if framework._non_static_mode(): if not isinstance(learning_rate, (float, LearningRateDecay, LRScheduler)): raise TypeError( "learning rate should be float or LRScheduler, got %s here" % type(learning_rate)) if self._parameter_list is None: raise AttributeError( "parameter_list argument given to the Optimizer should not be None in dygraph mode." ) if regularization is not None: for param in self._parameter_list: if param.regularizer is not None: logging.info( "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. " "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!" % regularization.__str__()) break else: if not isinstance(learning_rate, (float, framework.Variable, LRScheduler)): raise TypeError( "learning rate should be float or LRScheduler, got %s here" % type(learning_rate)) if grad_clip is not None: if not isinstance(grad_clip, GradientClipBase): raise TypeError( "'grad_clip' should be an instance of GradientClipBase's derived class" ) self.regularization = regularization self._grad_clip = grad_clip self._learning_rate = learning_rate self._flatten_param_grads = flatten_param_grads self._align_size = align_size self._dtype = None # Infer the dtype form parameter if self._parameter_list: self._dtype = self._parameter_list[0].dtype # each program should have a independent learning rate # program -> Variable(learning_rate) self._learning_rate_map = dict() if isinstance(self._learning_rate, framework.Variable): self._learning_rate_map[framework.default_main_program( )] = self._learning_rate # Dictionary of accumulators. Some optimizer subclasses need to # allocate and manage extra variables associated with the parameters # to train. These variables are called accumulators. # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...} self._accumulators = defaultdict(lambda: dict()) # global_accumulator dict, {accum_name : acc_variable, ...} self._global_accumulators = {} self.helper = LayerHelper(self.__class__.__name__) self._opti_name_list = [] self._accumulators_holder = {} self._param_device_map = dict() # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization, # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True. # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used). # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that. self._auxiliary_vars = dict() @framework.dygraph_only def state_dict(self): ''' Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict. If the optimizer never be called(minimize function), the state_dict is empty. Args: None Return: state_dict(dict) : dict contains all the variable used by optimizer Examples: .. code-block:: python import paddle.fluid as fluid with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters()) state_dict = adam.state_dict() ''' from paddle.optimizer.lr import LRScheduler state_dict = {} for k, v in self._accumulators.items(): for para_name, var_tmp in v.items(): state_dict[var_tmp.name] = var_tmp for k, v in self._global_accumulators.items(): state_dict[v.name] = v # global step if use lr decay if isinstance(self._learning_rate, LRScheduler): state_dict["LR_Scheduler"] = self._learning_rate.state_dict() return state_dict if isinstance(self._learning_rate, LearningRateDecay): state_dict["LR_Scheduler"] = self._learning_rate.state_dict() if not isinstance(self._learning_rate, _LearningRateEpochDecay): var_tmp = None var_temp = framework._varbase_creator( None, name='global_step', dtype='int32') tensor.fill_constant( [1], "int32", self._learning_rate.step_num, out=var_temp) state_dict['global_step'] = var_temp return state_dict @framework.dygraph_only def set_state_dict(self, state_dict): ''' Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed. Args: state_dict(dict) : Dict contains all the Variable needed by optimizer Return: None Examples: .. code-block:: python import paddle import paddle.fluid as fluid paddle.disable_static() emb = paddle.nn.Embedding(10, 10) state_dict = emb.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") scheduler = paddle.optimizer.lr.NoamDecay( d_model=0.01, warmup_steps=100, verbose=True) adam = paddle.optimizer.Adam( learning_rate=scheduler, parameters=emb.parameters()) state_dict = adam.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy") ''' from paddle.optimizer.lr import LRScheduler if isinstance(self._learning_rate, LRScheduler): self._learning_rate.set_dict(state_dict["LR_Scheduler"]) if isinstance(self._learning_rate, LearningRateDecay): self._learning_rate.set_dict(state_dict["LR_Scheduler"]) if not isinstance(self._learning_rate, _LearningRateEpochDecay): assert 'global_step' in state_dict, \ 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict' global_step = state_dict['global_step'] if isinstance(global_step, Variable): step_np = global_step step_np = np.array(step_np.value().get_tensor()) assert step_np.shape == (1,), \ "global step shape is (1,), the shape is {}".format( step_np.shape ) self._learning_rate.step_num = int(step_np[0]) elif isinstance(global_step, np.ndarray): assert global_step.shape == (1,), \ "global step shape is (1,), the shape is {}".format( global_step.shape ) self._learning_rate.step_num = global_step[0] else: raise RuntimeError( "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ", type(global_step)) def _load_state_para(state_dict, param): var = param.value() tensor = var.get_tensor() model_np = np.array(tensor) load_para = state_dict[param.name] if isinstance(load_para, Variable): load_para_np = load_para.numpy() elif isinstance(load_para, core.VarBase): load_para_np = load_para.numpy() elif isinstance(load_para, np.ndarray): load_para_np = load_para else: raise RuntimeError("State dict type {} not supprt".format( str(type(load_para)))) assert model_np.shape == load_para_np.shape, \ "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format( param.name, model_np.shape, load_para_np.shape) assert model_np.dtype == load_para_np.dtype, \ "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {} but load tensor with dtype {}".format( param.name, model_np.dtype, load_para_np.dtype) tensor.set(load_para_np, framework._current_expected_place()) self._accumulators_holder = state_dict for k, v in self._accumulators.items(): for para_name, var_tmp in v.items(): assert var_tmp.name in state_dict, \ "optimizer variable {} not found".format( var_tmp.name ) _load_state_para(state_dict, var_tmp) for k, v in self._global_accumulators.items(): assert v.name in state_dict, \ "optimizer variable {} not found".format( v.name ) _load_state_para(state_dict, v) # [aliases] Compatible with old method names set_dict = set_state_dict def get_opti_var_name_list(self): return self._opti_name_list def _set_auxiliary_var(self, key, val): self._auxiliary_vars[key] = val def _get_auxiliary_var(self, key): if key in self._auxiliary_vars: return self._auxiliary_vars[key] else: return None def _create_global_learning_rate(self): from paddle.optimizer.lr import LRScheduler if isinstance(self._learning_rate, LRScheduler): lr_var = self._global_learning_rate() # only create global lr_var once if not isinstance(lr_var, framework.Variable): lr_name = unique_name.generate('learning_rate') self._learning_rate._var_name = lr_name lr_var = self.helper.create_global_variable( name=lr_name, shape=[1], persistable=True, stop_gradient=True, dtype='float32' if self._dtype is None else self._dtype) main_prog = framework.default_main_program() main_prog.lr_sheduler = self._learning_rate main_prog.lr_var = lr_var self._learning_rate_map[framework.default_main_program( )] = lr_var lr_value = float(self._learning_rate()) self.helper.set_variable_initializer( lr_var, initializer=Constant(value=lr_value)) return if imperative_base.enabled(): # create learning rate Variable if isinstance(self._learning_rate, float): lr = self._global_learning_rate() if isinstance(lr, framework.Variable): return else: self._learning_rate_map[framework.default_main_program( )] = layers.create_global_var( name=unique_name.generate("learning_rate"), shape=[1], value=float(self._learning_rate), dtype='float32' if self._dtype is None else self._dtype, persistable=True) # get learning rate Variable from LearningRateDecay elif isinstance(self._learning_rate, LearningRateDecay): self._learning_rate_map[framework.default_main_program( )] = self._learning_rate() else: raise TypeError( "optimizer's learning rate must be float or LearningRateDecay" ) else: lr = self._global_learning_rate() if isinstance(lr, framework.Variable): return else: if not isinstance(self._learning_rate, float): raise TypeError( "learning rate variable is create outside optimizer," "can not create new learning rate variable for new program" ) # create learning rate in the current main program self._learning_rate_map[framework.default_main_program( )] = layers.create_global_var( name=unique_name.generate("learning_rate"), shape=[1], value=float(self._learning_rate), dtype='float32' if self._dtype is None else self._dtype, persistable=True) @framework.dygraph_only def set_lr(self, value): """ :api_attr: imperative Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay, this API cannot be invoked, because it will lead to conflict. Args: value (float|Variable): the value of learning rate Returns: None Examples: .. code-block:: python import paddle.fluid as fluid with fluid.dygraph.guard(): linear = fluid.dygraph.nn.Linear(10, 10) adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters()) # set learning rate manually by python float value lr_list = [0.2, 0.3, 0.4, 0.5, 0.6] for i in range(5): adam.set_lr(lr_list[i]) lr = adam.current_step_lr() print("current lr is {}".format(lr)) # Print: # current lr is 0.2 # current lr is 0.3 # current lr is 0.4 # current lr is 0.5 # current lr is 0.6 # set learning rate manually by framework Variable lr_var = fluid.layers.create_global_var( shape=[1], value=0.7, dtype='float32') adam.set_lr(lr_var) lr = adam.current_step_lr() print("current lr is {}".format(lr)) # Print: # current lr is 0.7 """ if not isinstance(value, (framework.Variable, float)): raise TypeError( "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s." % (type(value))) if isinstance(self._learning_rate, LearningRateDecay): raise RuntimeError( "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict." ) if isinstance(value, float): self._learning_rate = value current_lr = self._global_learning_rate() if current_lr is not None: if framework._non_static_mode(): _C_ops.fill_constant(current_lr, 'value', float(value), 'dtype', current_lr.dtype, 'shape', list(current_lr.shape)) else: global_block = framework.default_main_program( ).global_block() global_block.append_op( type='fill_constant', outputs={'Out': [current_lr]}, attrs={ 'dtype': current_lr.dtype, 'shape': list(current_lr.shape), 'value': float(value) }, stop_gradient=True) else: assert len(value.shape) == 1 and value.shape[ 0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]" self._learning_rate_map[framework.default_main_program()] = value @framework.dygraph_only def current_step_lr(self): """ :api_attr: imperative Get current step learning rate. The return value is all the same When LearningRateDecay is not used, otherwise return the step learning rate. Returns: float: The learning rate of the current step. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np # example1: LearningRateDecay is not used, return value is all the same with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters()) lr = adam.current_step_lr() print(lr) # 0.001 # example2: PiecewiseDecay is used, return the step learning rate with fluid.dygraph.guard(): inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32") linear = fluid.dygraph.nn.Linear(10, 10) inp = fluid.dygraph.to_variable(inp) out = linear(inp) loss = fluid.layers.reduce_mean(out) bd = [2, 4, 6, 8] value = [0.2, 0.4, 0.6, 0.8, 1.0] adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0), parameter_list=linear.parameters()) # first step: learning rate is 0.2 np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True # learning rate for different steps ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0] for i in range(12): adam.minimize(loss) lr = adam.current_step_lr() np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True """ current_lr = self._global_learning_rate() if isinstance(current_lr, framework.Variable): return self._global_learning_rate().numpy()[0] if isinstance(self._learning_rate, float): return self._learning_rate elif isinstance(self._learning_rate, _LearningRateEpochDecay): step_lr = self._learning_rate() return step_lr.numpy()[0] else: step_lr = self._learning_rate.step() if isinstance(step_lr, (float, int)): return step_lr else: return step_lr.numpy()[0] def _global_learning_rate(self, program=None): """ get global decayed learning rate :return: """ if program is None: program = framework.default_main_program() return self._learning_rate_map.get(program, None) def _append_optimize_op(self, block, param_and_grad): """ append optimize operator to block and return all the added optimize_op """ raise NotImplementedError() def _create_param_lr(self, param_and_grad): # create learning rate variable for every parameter param = param_and_grad[0] param_lr = param.optimize_attr['learning_rate'] if type(param_lr) == Variable: return param_lr else: if param_lr == 1.0: return self._global_learning_rate() else: with default_main_program()._lr_schedule_guard( is_with_opt=True), framework.name_scope( 'scale_with_param_lr'): return self._global_learning_rate() * param_lr def _create_accumulators(self, block, parameters): """Create all accumulators needed by the parameters Args: block: the block in which the loss variable is present parameters: list of parameter variables for the optimizer """ pass def _finish_update(self, block, parameters_and_grads): """Finish any custom updates needed before completing an optimization step Args: block: the block in which the loss variable is present parameters: list of parameter variables for the optimizer Returns: None """ pass def _add_accumulator(self, name, param, dtype=None, fill_value=0.0, shape=None, type=None, device=None): """Utility function to add an accumulator for a parameter Args: block: the block in which the loss variable is present name: name of the accumulator param: parameter variable for which accumulator is to be added dtype: data type of the accumulator variable fill_value: value to initialize the accumulator variable """ if self._name is not None: name = self._name + "_" + name if (name in self._accumulators and param.name in self._accumulators[name]): if framework._non_static_mode(): return self._accumulators[name][param.name] raise Exception("Accumulator {} already exists for parameter {}". format(name, param.name)) if shape == None: shape = param.shape assert isinstance(self.helper, LayerHelper) var_name = param.name + "_" + name var_name = unique_name.generate(var_name) self._opti_name_list.append(var_name) var = self.helper.create_global_variable( name=var_name, persistable=True, dtype=dtype or param.dtype, type=core.VarDesc.VarType.LOD_TENSOR if framework._non_static_mode() else (param.type if type is None else type), shape=shape, belong_to_optimizer=True) if device is None: device = self._get_device_for_param(param.name) with device_guard(device): self.helper.set_variable_initializer( var, initializer=Constant(value=float(fill_value))) if framework._non_static_mode(): if len(self._accumulators_holder) > 0: assert var_name in self._accumulators_holder, \ "Optimizer set error, {} should in state dict".format( var_name ) var.set_value(self._accumulators_holder[var_name]) self._accumulators[name][param.name] = var return var def _add_global_accumulator(self, name, dtype=None, fill_value=0.0, shape=None, type=None, device=None): """Utility function to add a global accumulator for all parameters in the model Args: block: the block in which the loss variable is present name: name of the accumulator dtype: data type of the accumulator variable fill_value: value to initialize the accumulator variable shape: the shape of the accumulator type: the variable type of the accumulator device: the target place of the accumulator """ if self._name is not None: name = self._name + "_" + name if (name in self._global_accumulators): if framework._non_static_mode(): return self._global_accumulators[name] raise Exception("Global accumulator {} already exists".format(name)) if shape == None: shape = [1] # most case, global accumulator is of shape [1] assert isinstance(self.helper, LayerHelper) var_name = name var_name = unique_name.generate(var_name) self._opti_name_list.append(var_name) var = self.helper.create_global_variable( name=var_name, persistable=True, dtype=dtype if dtype else self._dtype, type=type, shape=shape, belong_to_optimizer=True) if device is None: device = 'cpu' with device_guard(device): self.helper.set_variable_initializer( var, initializer=Constant(value=float(fill_value))) if framework._non_static_mode(): if len(self._accumulators_holder) > 0: assert var_name in self._accumulators_holder, \ "Optimizer set error, {} should in state dict".format( var_name ) var.set_value(self._accumulators_holder[var_name]) self._global_accumulators[name] = var return var def _get_accumulator(self, name, param): """Utility function to fetch an accumulator for a parameter Args: name: name of the accumulator param: parameter variable for which accumulator is to be fetched Returns: accumulator variable """ if self._name is not None: name = self._name + "_" + name if (name not in self._accumulators or param.name not in self._accumulators[name]): raise Exception("Accumulator {} does not exist for parameter {}". format(name, param.name)) return self._accumulators[name][param.name] def _get_global_accumulator(self, name): """Utility function to fetch a global accumulator Args: name: name of the accumulator Returns: accumulator variable """ if self._name is not None: name = self._name + "_" + name if (name not in self._global_accumulators): raise Exception("Global accumulator {} does not exist".format(name)) return self._global_accumulators[name] def _update_param_device_map(self, parameters_and_grads, target_block): for param_and_grad in parameters_and_grads: if param_and_grad[0].trainable is True: param_name = param_and_grad[0].name ops = target_block.ops device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName( ) for op in ops: input_arg_names = op.input_arg_names if param_name in input_arg_names: self._param_device_map[param_name] = op.attr( device_attr_name) break def _get_device_for_param(self, param_name): device = None if param_name in self._param_device_map: device = self._param_device_map[param_name] return device def _create_optimization_pass(self, parameters_and_grads): """Add optimization operators to update gradients to variables. Args: parameters_and_grads(list(tuple(Variable, Variable))): a list of (variable, gradient) pair to update. Returns: return_op_list: a list of operators that will complete one step of optimization. This will include parameter update ops, global step update ops and any other custom ops required by subclasses to manage their internal state. """ # This is a default implementation of create_optimization_pass that # can be shared by most optimizers. This implementation assumes that # the subclass will implement the _append_optimize_op method and the # _initialize_tensors method. The subclass can extend the # _create_accumulators method if it needs to create accumulators # for parameters and extend _finish_update method to add custom ops. # Allways called under program_guard use global block as loss block # But if current block is in control flow, append optimize op in the # grad block of current block global_block = framework.default_main_program().global_block() target_block = global_block current_block = framework.default_main_program().current_block() if current_block.idx != global_block.idx: assert current_block.backward_block_idx != -1, \ "current block is not global_block, but it doesn't have backward block." target_block = framework.default_main_program().blocks[ current_block.backward_block_idx] start = len(target_block.ops) self._update_param_device_map(parameters_and_grads, target_block) self._create_accumulators( target_block, [p[0] for p in parameters_and_grads if p[0].trainable]) self._create_global_learning_rate() if framework._non_static_mode(): for param_and_grad in parameters_and_grads: if param_and_grad[1] is None: continue if param_and_grad[0].trainable is True: self._append_optimize_op(target_block, param_and_grad) else: for param_and_grad in parameters_and_grads: if param_and_grad[1] is None: continue with param_and_grad[0].block.program._optimized_guard( param_and_grad), name_scope("optimizer"): if param_and_grad[0].trainable is True: device = self._get_device_for_param(param_and_grad[0] .name) with device_guard(device): optimize_op = self._append_optimize_op( target_block, param_and_grad) # Get custom finish ops for subclasses # FIXME: Need to fix this once we figure out how to handle dependencies self._finish_update(target_block, parameters_and_grads) end = len(target_block.ops) return target_block._slice_ops(start, end) def _process_distribute_lookuptable(self, param_grads): """ Because distribute lookup table only support SGD optimizer for now, not support other optimizer and regularization, so we should find the table parameter out, and avoid to add regularization and other op for it, and add sgd optimize op for it independently. :param param_grads(list((Var, Var))): list of (param, grad) pair. :param loss: the loss variable. :param startup_program: the startup program """ program = framework.default_main_program() global_block = framework.default_main_program().global_block() table_name = find_distributed_lookup_table(program) table_param = None table_grad = None new_param_grads = [] for p, g in param_grads: if p.name == table_name: if table_param is not None: raise RuntimeError( "multi dist table var found, only support one now!") table_param = p table_grad = g else: new_param_grads.append((p, g)) sgd_op = None if table_param is not None: param_and_grad = [table_param, table_grad] with table_param.block.program._optimized_guard(param_and_grad), \ framework.name_scope("optimizer"): self._create_global_learning_rate() # create the optimize op sgd_op = global_block.append_op( type='sgd', inputs={ "Param": table_param, "Grad": table_grad, "LearningRate": self._create_param_lr(param_and_grad) }, outputs={"ParamOut": param_and_grad[0]}) return new_param_grads, (table_param, table_grad), sgd_op def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): """ The first part of ``minimize``, do auto-diff to append backward operations for the current program. Args: loss (Variable): ``loss`` variable to run optimizations. startup_program (Program, optional): :ref:`api_fluid_Program` for initializing parameters in ``parameter_list``. The default value is None, at this time :ref:`api_fluid_default_startup_program` will be used. parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update to minimize ``loss``. The default value is None, at this time all parameters will be updated. no_grad_set (set, optional): Set of ``Variable`` or ``Variable.name`` that don't need to be updated. The default value is None. callbacks (list, optional): list of callable objects to run when appending backward operator for one parameter. The default value is None. Return: list: list of (param, grad) variable pairs, param is ``Parameter``, grad is the gradient value corresponding to the parameter. Examples: See examples in ``apply_gradients``. """ act_no_grad_set = None if framework._non_static_mode(): pass else: act_no_grad_set = self._get_no_grad_set(loss, no_grad_set) # Infer dtype by loss if None if self._dtype is None: self._dtype = loss.dtype if framework._non_static_mode(): parameter_list = parameter_list if parameter_list \ else self._parameter_list params_grads = [] for param in parameter_list: if not param.trainable: continue if param._grad_ivar() is not None: # create gradient variable grad_var = param._grad_ivar() params_grads.append((param, grad_var)) else: if callbacks is None: callbacks = [error_clip_callback] else: assert (isinstance(callbacks, list)) program = loss.block.program assert len(loss.shape) == 1 and loss.shape[0] == 1, \ "The loss.shape should be (1L,), but the current loss.shape is {}. " \ "Maybe that you should call fluid.layers.mean to process the current loss.".format( loss.shape) parameter_list = parameter_list if parameter_list \ else self._parameter_list with program_guard(program, startup_program): params_grads = append_backward(loss, parameter_list, act_no_grad_set, callbacks) return params_grads def _create_regularization_of_grad(self, param, grad, regularization=None): """ Create and add backward regularization Operators Function helper of append_regularization_ops. """ # If no gradient or no regularization is specified, then we don't need to do anything if grad is None or ((not hasattr(param, 'regularizer') or (hasattr(param, 'regularizer') and param.regularizer is None)) and regularization is None): return grad regularization_term = None if hasattr(param, 'regularizer') and param.regularizer is not None: # Add variable for regularization term in grad block regularization_term = param.regularizer(param, grad, grad.block) elif regularization is not None: regularization_term = regularization(param, grad, grad.block) assert regularization_term is not None if framework._non_static_mode(): return _C_ops.sum([grad, regularization_term]) new_grad = grad if grad.type == core.VarDesc.VarType.SELECTED_ROWS: # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization, # the grad's type and name will be changed. But the gradient's name # is used in ParallelExecutor Reduce mode, so I add a flag for # the new_grad here. new_grad = grad.block.create_var( name=grad.name + core.kNewGradSuffix(), dtype=param.dtype, shape=param.shape, lod_level=param.lod_level, type=core.VarDesc.VarType.LOD_TENSOR) inputs = {"X": [grad, regularization_term]} outputs = {"Out": [new_grad]} grad.block.append_op(type='sum', inputs=inputs, outputs=outputs) return new_grad def append_regularization_ops(self, parameters_and_grads, regularization=None): r"""Create and add backward regularization Operators Creates and adds backward regularization operators in the BlockDesc. This will add gradients of the regularizer function to the gradients of the parameters and return these modified gradients. This is the same as implementing weight decay in optimizers for regularization. Args: parameters_and_grads: A list of (parameters, gradients) pairs that need to be regularized. regularization: A global regularizer. If the parameter is not set. It will be applied with regularizer. Returns: list[(Variable, Variable)]: list of (parameters, gradients) \ pair with the regularized gradient Raises: Exception: Unknown regularization type """ params_and_grads = [] if framework._non_static_mode(): for param, grad in parameters_and_grads: new_grad = self._create_regularization_of_grad(param, grad, regularization) params_and_grads.append((param, new_grad)) else: repeate_regularizer = False with framework.name_scope('regularization'): for param, grad in parameters_and_grads: if not repeate_regularizer and getattr( param, 'regularizer', None) is not None and regularization is not None: repeate_regularizer = True logging.info( "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. " "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!" % regularization.__str__()) with param.block.program._optimized_guard([param, grad]): new_grad = self._create_regularization_of_grad( param, grad, regularization) params_and_grads.append((param, new_grad)) return params_and_grads def flatten_param_grads(self, params_grads): need_flatten_params = [] need_flatten_grads = [] for p, g in params_grads: if g is None: continue g.persistable = True if getattr(p, 'need_clip', True) is False or getattr( p, 'regularizer', None) is not None: warnings.warn( "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or " "the regularizer is set".format(p.name)) self._flatten_param_grads = False return params_grads need_flatten_params.append(p) need_flatten_grads.append(g) shape = [np.prod(p.shape) for p in need_flatten_params] block = need_flatten_params[0].block flatten_param = self.helper.create_global_variable( name='flatten_param', persistable=True, dtype=need_flatten_params[0].dtype, shape=[np.sum(shape)], belong_to_optimizer=True) flatten_param.trainable = True flatten_param.optimize_attr = need_flatten_params[0].optimize_attr flatten_param.regularizer = need_flatten_params[0].regularizer flatten_grad = self.helper.create_global_variable( name='flatten_grad', persistable=True, dtype=need_flatten_grads[0].dtype, shape=[np.sum(shape)], belong_to_optimizer=True) with program_guard(default_main_program()): block.append_op( type="coalesce_tensor", inputs={"Input": need_flatten_params}, outputs={ "Output": need_flatten_params, "FusedOutput": flatten_param }, attrs={ "copy_data": True, "use_align": True, "align_size": self._align_size, "dtype": need_flatten_params[0].dtype }) block.append_op( type="coalesce_tensor", inputs={"Input": need_flatten_grads}, outputs={ "Output": need_flatten_grads, "FusedOutput": flatten_grad }, attrs={ "copy_data": True, "use_align": True, "align_size": self._align_size, "dtype": need_flatten_grads[0].dtype }) #NOTE(zhiqiu): the initializer should be set after coalesce_tensor op, # so the shape of flatten_param and flatten_grad will be inferred. self.helper.set_variable_initializer( flatten_param, initializer=Constant(0.0)) self.helper.set_variable_initializer( flatten_grad, initializer=Constant(0.0)) return [(flatten_param, flatten_grad)] def apply_gradients(self, params_grads): """ Second part of `minimize`, appending optimization operators for given `params_grads` pairs. Args: params_grads (list): list of (param, grad) pair to do optimization. Returns: list: A list of operators appended to the current program. Examples: .. code-block:: python import paddle.fluid as fluid loss = network() optimizer = fluid.optimizer.SGD(learning_rate=0.1) params_grads = optimizer.backward(loss) # you may append operations for params_grads here # ... optimizer.apply_gradients(params_grads) """ params_grads = sorted(params_grads, key=lambda x: x[0].name) # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization. if self._flatten_param_grads and self.regularization is None: if self._grad_clip == None or isinstance(self._grad_clip, ClipGradByGlobalNorm): params_grads = self.flatten_param_grads(params_grads) # 'optimizer(grad_clip)' or 'set_gradient_clip' if self._grad_clip is not None: params_grads = self._grad_clip(params_grads) else: params_grads = append_gradient_clip_ops(params_grads) # Add regularization if any params_grads = self.append_regularization_ops(params_grads, self.regularization) optimize_ops = self._create_optimization_pass(params_grads) return optimize_ops def apply_optimize(self, loss, startup_program, params_grads): """ Second part of `minimize`, appending optimization operators for given `params_grads` pairs. Args: loss (Variable): loss variable to run optimizations. startup_program (Program): startup_program for initializing parameters in `parameter_list`. params_grads (list): list of (param, grad) pair to do optimization. Returns: list: A list of operators appended to the current program. """ if framework._non_static_mode(): with program_guard(framework.default_main_program(), framework.default_startup_program()): if self._grad_clip is not None: params_grads = self._grad_clip(params_grads) params_grads = self.append_regularization_ops( params_grads, self.regularization) optimize_ops = self._create_optimization_pass(params_grads) else: program = loss.block.program with program_guard(program, startup_program): optimize_ops = self.apply_gradients(params_grads) return optimize_ops def _get_no_grad_set(self, loss, no_grad_set=None): no_grad_set = _get_no_grad_set_name(no_grad_set) parameters = loss.block.program.global_block().all_parameters() param_no_trainable = set( [param.name for param in parameters if param.trainable is False]) # If the parameter is no trainable, it should not have a gradient. no_grad_set.update(param_no_trainable) return no_grad_set @framework.dygraph_only def clear_gradients(self): """ Clear the gradients of all optimized parameters for model. If not, new gradient will accumulat on previous gradient. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): value = np.arange(26).reshape(2, 13).astype("float32") a = fluid.dygraph.to_variable(value) linear = fluid.Linear(13, 5, dtype="float32") # This can be any optimizer supported by dygraph. adam = fluid.optimizer.Adam(learning_rate = 0.01, parameter_list = linear.parameters()) out = linear(a) out.backward() adam.minimize(out) adam.clear_gradients() """ for p in self._parameter_list: if p.trainable: p.clear_gradient() @imperative_base.no_grad def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): """ Add operations to minimize ``loss`` by updating ``parameter_list``. Args: loss (Variable): A ``Variable`` containing the value to minimize. startup_program (Program, optional): :ref:`api_fluid_Program` for initializing parameters in ``parameter_list``. The default value is None, at this time :ref:`api_fluid_default_startup_program` will be used. parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update to minimize ``loss``. The default value is None, at this time all parameters will be updated. no_grad_set (set, optional): Set of ``Variable`` or ``Variable.name`` that don't need to be updated. The default value is None. Returns: tuple: tuple (optimize_ops, params_grads), A list of operators appended by minimize and a list of (param, grad) variable pairs, param is ``Parameter``, grad is the gradient value corresponding to the parameter. The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to indicate program pruning. If so, the program will be pruned by ``feed`` and ``fetch_list`` before run, see details in ``Executor``. Examples: Please refer to the example of current Optimizer. """ assert isinstance(loss, Variable), "The loss should be an Variable." parameter_list = parameter_list if parameter_list \ else self._parameter_list params_grads = self.backward( loss, startup_program=startup_program, parameter_list=parameter_list, no_grad_set=no_grad_set) optimize_ops = self.apply_optimize( loss, startup_program=startup_program, params_grads=params_grads) return optimize_ops, params_grads class SGDOptimizer(Optimizer): r""" Optimizer of the stochastic gradient descent algorithm. .. math:: param\_out = param - learning\_rate * grad Parameters: learning_rate (float|Variable): The learning rate used to update parameters. \ Can be a float value or a Variable with one float value as data element. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): This parameter is used by developers to print debugging information. \ For details, please refer to :ref:`api_guide_Name`. Default is None. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list) """ def __init__(self, learning_rate, parameter_list=None, regularization=None, grad_clip=None, multi_precision=False, name=None): assert learning_rate is not None super(SGDOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) self.type = "sgd" self._use_mkldnn = False self._multi_precision = multi_precision self._master_weights = {} def _create_master_weight(self, param): if param.name in self._master_weights: var = self._master_weights[param.name] else: assert isinstance(self.helper, LayerHelper) var_name = param.name + "_fp32_master" var_name = unique_name.generate(var_name) var = layers.create_global_var( name=var_name, shape=param.shape, value=0, dtype='float32', persistable=True) block = self.helper.startup_program.global_block() block.append_op( type="cast", inputs={"X": [param]}, outputs={"Out": [var]}, attrs={ "in_dtype": param.dtype, "out_dtype": core.VarDesc.VarType.FP32 }) self._master_weights[param.name] = var return var def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) if isinstance(parameters, dict): parameters = self._update_param_group(parameters) # Create accumulator tensors for first and second moments for p in parameters: if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16: master_p = self._create_master_weight(p) continue if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision: warnings.warn( "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence." "Consider using multi_precision=True option of the Adam optimizer." ) @no_grad def _append_optimize_op(self, block, param_and_grad): find_master = self._multi_precision and param_and_grad[ 0].dtype == core.VarDesc.VarType.FP16 master_weight = (self._master_weights[param_and_grad[0].name] if find_master else None) lr = self._create_param_lr(param_and_grad) if in_dygraph_mode(): _C_ops.final_state_sgd(param_and_grad[0], lr, param_and_grad[1], master_weight, find_master) return None if _in_legacy_dygraph(): _C_ops.sgd(param_and_grad[0], lr, param_and_grad[1], master_weight, param_and_grad[0], master_weight) return None assert isinstance(block, framework.Block) # create the optimize op inputs = { "Param": param_and_grad[0], "Grad": param_and_grad[1], "LearningRate": lr } outputs = {"ParamOut": param_and_grad[0]} attrs = {"multi_precision": find_master} if find_master: inputs["MasterParam"] = master_weight outputs["MasterParamOut"] = master_weight sgd_op = block.append_op( type=self.type, inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) return sgd_op class MomentumOptimizer(Optimizer): r""" Simple Momentum optimizer with velocity state This optimizer has a flag for Nestrov Momentum. The update equations are as follows: .. math:: & velocity = mu * velocity + gradient & if (use\_nesterov): &\quad param = param - (gradient + mu * velocity) * learning\_rate & else: &\quad param = param - learning\_rate * velocity Parameters: learning_rate (float|Variable): The learning rate used to update parameters. \ Can be a float value or a Variable with one float value as data element. momentum (float): Momentum factor parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. use_nesterov (bool, optional): Enables Nesterov momentum, default is false. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): This parameter is used by developers to print debugging information. \ For details, please refer to :ref:`api_guide_Name`. Default is None. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9) moment_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list) """ _velocity_acc_str = "velocity" def __init__(self, learning_rate, momentum, parameter_list=None, use_nesterov=False, regularization=None, grad_clip=None, name=None): assert learning_rate is not None assert momentum is not None super(MomentumOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) self.type = "momentum" self._momentum = momentum self._use_nesterov = bool(use_nesterov) def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) for p in parameters: self._add_accumulator(self._velocity_acc_str, p) def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) velocity_acc = self._get_accumulator(self._velocity_acc_str, param_and_grad[0]) lr = self._create_param_lr(param_and_grad) master_weight = None if framework._non_static_mode(): _, _, _ = _C_ops.momentum( param_and_grad[0], param_and_grad[1], velocity_acc, lr, master_weight, param_and_grad[0], velocity_acc, master_weight, 'mu', self._momentum, 'use_nesterov', self._use_nesterov) return None attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov} inputs = { "Param": [param_and_grad[0]], "Grad": [param_and_grad[1]], "Velocity": [velocity_acc], "LearningRate": [lr] } outputs = { "ParamOut": [param_and_grad[0]], "VelocityOut": [velocity_acc] } # create the momentum optimize op momentum_op = block.append_op( type=self.type, inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) return momentum_op class DGCMomentumOptimizer(Optimizer): r""" :api_attr: Static Graph DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887 DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\ only gradients larger than a threshold are transmitted. To avoid losing information, DGC accumulates the rest of the gradients locally. Eventually, these gradients become large enough to be transmitted. Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time. To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance. DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication. This optimizer will do two things: 1. Compress the gradient by get TopK import value from tensor \ and use it for allreduce to reduce network bandwidth. 2. Call momentum to optimize the cost. Args: learning_rate (float|Variable): The learning rate used to update parameters. \ It can be a float value or a Variable with one float value as a data element. momentum (float): Momentum factor. rampup_begin_step (int): The beginning step from which gradient compression is implemented. rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1. For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \ it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \ And when reach sparsity array ends, it will use 0.999 then and after. sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \ Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \ the top [1%, 0.1%] important element will be transmitted. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, meaning there is no gradient clipping. name (str, optional): This parameter is used by developers to print debugging information. \ For details, please refer to :ref:`api_guide_Name`. Default is None. Examples: .. code-block:: python import paddle.fluid as fluid optimizer = fluid.optimizer.DGCMomentumOptimizer( learning_rate=0.0001, momentum=0.9, rampup_step=1000, rampup_begin_step=1252, sparsity=[0.999, 0.999]) """ _u_velocity_acc_str = "_dgc_u_" _v_velocity_acc_str = "_dgc_v_" def __init__(self, learning_rate, momentum, rampup_begin_step, rampup_step=1, sparsity=[0.999], parameter_list=None, use_nesterov=False, num_trainers=None, regularization=None, grad_clip=None, name=None): if framework._non_static_mode(): raise Exception("In dygraph, don't support DGCMomentumOptimizer.") assert core.is_compiled_with_cuda(), \ "Paddle is not compiled with CUDA. DGC is only support GPU for now." assert learning_rate is not None assert momentum is not None super(DGCMomentumOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) self.type = "dgc_momentum" self._momentum = momentum self._use_nesterov = bool(use_nesterov) assert rampup_begin_step >= 0, "rampup_begin_step must >= 0" self._rampup_begin_step = rampup_begin_step self._rampup_step = rampup_step self._sparsity = sparsity self._rampup_begin_step_var = None self._global_step_var = None self._dgc_clip_norm = None if grad_clip is not None: if not isinstance(grad_clip, GradientClipByNorm): raise TypeError( "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm" ) assert isinstance( num_trainers, int ), "The type of num_trainers should be 'int', but received %s" % type( num_trainers) assert num_trainers > 0, "The value of num_trainers should be greater than 0!" self._num_trainers = num_trainers self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5) self.regular_type, self.regular_coeff = self._get_regularization_param( self.regularization) def _get_regularization_param(self, regularization): regular_type = 0 regular_coeff = 0.0 if regularization is not None: regular_coeff = regularization._regularization_coeff from .regularizer import L1Decay, L2Decay if isinstance(regularization, L1Decay): regular_type = 1 elif isinstance(regularization, L2Decay): regular_type = 2 else: assert False, 'regularization must be None|L1Decay|L2Deacy' return regular_type, regular_coeff def _is_use_dgc(self, param_var, grad_var): var_numel = abs(reduce(lambda x, y: x * y, param_var.shape)) if var_numel < 16384 or \ param_var.type == core.VarDesc.VarType.SELECTED_ROWS or \ grad_var.type == core.VarDesc.VarType.SELECTED_ROWS or \ param_var.dtype != core.VarDesc.VarType.FP32 : return False return True def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) velocity_acc = self._get_accumulator(self._u_velocity_acc_str, param_and_grad[0]) assert velocity_acc is not None inputs = { "Param": param_and_grad[0], "Grad": param_and_grad[1], "Velocity": velocity_acc, "LearningRate": self._create_param_lr(param_and_grad), } outputs = { "ParamOut": param_and_grad[0], "VelocityOut": velocity_acc, } attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov} if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]): type = "momentum" else: type = "dgc_momentum" inputs.update({ "current_step": self._global_step_var, "nranks": self._nranks_var }) outputs.update({'Grad_out': param_and_grad[1]}) attrs.update({"rampup_begin_step": float(self._rampup_begin_step)}) # create the dgc momentum optimize op dgc_momentum_op = block.append_op( type=type, inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) return dgc_momentum_op def _add_auto_increment_var(self, counter_name, begin, step=1): helper = LayerHelper('global_step_counter') counter, is_new_var = helper.create_or_get_global_variable( name=counter_name, dtype='float32', shape=[1], persistable=True) if is_new_var: helper.set_variable_initializer( counter, initializer=Constant( value=float(begin - 1), force_cpu=True)) helper.main_program.global_block()._prepend_op( type='increment', inputs={'X': [counter]}, outputs={'Out': [counter]}, attrs={'step': float(step)}, stop_gradient=True) counter.stop_gradient = True return counter def _add_nranks_var(self, name, value=-1): helper = LayerHelper('global_step_counter') counter, is_new_var = helper.create_or_get_global_variable( name=name, dtype='float32', shape=[1], persistable=True) if is_new_var: helper.set_variable_initializer( counter, initializer=Constant( value=float(value), force_cpu=True)) counter.stop_gradient = True return counter def _append_dgc_ops(self, param_and_grads): main_program = default_main_program() main_program._enable_dgc = True # step counter self._global_step_var = self._add_auto_increment_var( counter_name=core.dgc.kDGCCounterName(), begin=0) self._nranks_var = self._add_nranks_var( name=core.dgc.kDGCNRanksName(), value=-1) # rampup begin step var for all_reduce_op_handle self._rampup_begin_step_var = tensor.create_global_var( shape=[1], dtype=core.VarDesc.VarType.FP32, persistable=True, name=core.dgc.kDGCRampUpBeginStepName(), value=self._rampup_begin_step * 1.0, force_cpu=True) self.helper = LayerHelper(self.__class__.__name__) for param_var, grad_var in param_and_grads: # reuse velocity in dgc_op and dgc_momentum_op u_var = self._add_accumulator(self._u_velocity_acc_str, param_var) if not self._is_use_dgc(param_var, grad_var): continue v_var = self._add_accumulator(self._v_velocity_acc_str, param_var) k_var = tensor.create_global_var( shape=[1], dtype=param_var.dtype, persistable=True, name=param_var.name + core.dgc.kDGCKName(), value=0.0, force_cpu=True) encoded_var = tensor.create_global_var( shape=[1], dtype=param_var.dtype, persistable=True, name=param_var.name + core.dgc.kDGCEncodedName(), value=0.0, force_cpu=False) gather_var = tensor.create_global_var( shape=[1], dtype=param_var.dtype, persistable=True, name=param_var.name + core.dgc.kDGCGatherName(), value=0.0, force_cpu=False) # del back oprolevarname op_maker = core.op_proto_and_checker_maker backward = core.op_proto_and_checker_maker.OpRole.Backward for op in main_program.global_block().ops: if not self._is_the_backward_op(op): continue var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()] if param_var.name not in var_attr: continue var_attr.remove(param_var.name) var_attr.remove(grad_var.name) if len(var_attr) > 1: op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr) else: op._remove_attr(op_maker.kOpRoleVarAttrName()) clip_var = grad_var if self._dgc_clip_norm is not None: clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm) self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var, encoded_var, gather_var) def _is_the_backward_op(self, op): op_maker = core.op_proto_and_checker_maker backward = core.op_proto_and_checker_maker.OpRole.Backward if op_maker.kOpRoleVarAttrName() in op.attr_names and \ int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward): return True return False def _clip_by_norm(self, x, max_norm, name=None): args = {'x': x, 'max_norm': max_norm, 'name': name} helper = LayerHelper("dgc_clip_by_norm_op", **args) if name is None: name = unique_name.generate_with_ignorable_key(".".join( [helper.name, 'tmp'])) out = helper.create_variable( type=x.type, name=name, dtype=x.dtype, persistable=False) helper.append_op( type="dgc_clip_by_norm", inputs={"X": x, "current_step": self._global_step_var}, attrs={ "max_norm": max_norm, "rampup_begin_step": float(self._rampup_begin_step) }, outputs={"Out": out}) return out def _append_clip_norm(self, grad_var, clip_norm): with grad_var.block.program._backward_role_guard(): return self._clip_by_norm( x=grad_var, max_norm=clip_norm, name=grad_var.name) def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var, encoded_var, gather_var): block = framework.default_main_program().global_block() op_maker = core.op_proto_and_checker_maker regular_type = self.regular_type regular_coeff = self.regular_coeff # The regularizer of the Parameters have higher priority if param_var.regularizer is not None: regular_type, regular_coeff = self._get_regularization_param( param_var.regularizer) dgc_op = block.append_op( type="dgc", inputs={ "U": u_var, "V": v_var, "Grad": clip_var, "Param": param_var, "current_step": self._global_step_var, "nranks": self._nranks_var, }, outputs={ "U_out": u_var, "V_out": v_var, "EncodeGrad": encoded_var, "k": k_var, "Grad_out": grad_var, "GatherBuff": gather_var, }, attrs={ "m": self._momentum, "sparsity": self._sparsity, "use_nesterov": self._use_nesterov, "rampup_begin_step": float(self._rampup_begin_step), "rampup_step": float(self._rampup_step), "regular_coeff": float(regular_coeff), "regular_type": int(regular_type), }, stop_gradient=True) backward = op_maker.OpRole.Backward dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward) dgc_op._set_attr(op_maker.kOpRoleVarAttrName(), [param_var.name, grad_var.name]) @imperative_base.no_grad def apply_gradients(self, params_grads): # Note: since we can't use all_reduce_op now, # dgc_op should be the last op of one grad. # Maybe need a grad allreduce pass. self._append_dgc_ops(params_grads) params_grads = sorted(params_grads, key=lambda x: x[0].name) params_grads, table_param_and_grad, table_optimize_op = \ self._process_distribute_lookuptable(params_grads) not_dgc_params_grads = [] dgc_params_grads = [] # DGC clip and regularization in optimizer.backward for param, grad in params_grads: if not self._is_use_dgc(param, grad): not_dgc_params_grads.append((param, grad)) else: dgc_params_grads.append((param, grad)) # 'optimizer(grad_clip)' or 'set_gradient_clip' if self._grad_clip is not None: not_dgc_params_grads = self._grad_clip(not_dgc_params_grads) else: not_dgc_params_grads = append_gradient_clip_ops( not_dgc_params_grads) not_dgc_params_grads = self.append_regularization_ops( not_dgc_params_grads, self.regularization) params_grads = not_dgc_params_grads + dgc_params_grads params_grads = sorted(params_grads, key=lambda x: x[0].name) optimize_ops = self._create_optimization_pass(params_grads) if table_optimize_op is not None: optimize_ops.append(table_optimize_op) params_grads.append(table_param_and_grad) return optimize_ops class LarsMomentumOptimizer(Optimizer): r""" Momentum optimizer with LARS support The update equations are as follows: .. math:: & local\_learning\_rate = learning\_rate * lars\_coeff * \\ \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||} & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon) & param = param - velocity Parameters: learning_rate (float|Variable): The learning rate used to update parameters. \ Can be a float value or a Variable with one float value as data element. \ momentum (float): momentum factor lars_coeff (float): Defines how much we trust the layer to change its weights. lars_weight_decay (float): Weight decay coefficient for decaying using LARS. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): This parameter is used by developers to print debugging information. \ For details, please refer to :ref:`api_guide_Name`. Default is None. exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None. epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0. multi_precision (bool, optional): Whether to use multi-precision during weight updating. rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \ before updating. Often choose to be `1.0/batch_size`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) inp = fluid.layers.data( name="inp", shape=[2, 2], append_batch_size=False) out = fluid.layers.fc(inp, size=3) out = fluid.layers.reduce_sum(out) optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9) optimizer.minimize(out) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) exe.run( feed={"inp": np_inp}, fetch_list=[out.name]) """ _velocity_acc_str = "velocity" def __init__(self, learning_rate, momentum, lars_coeff=0.001, lars_weight_decay=0.0005, parameter_list=None, regularization=None, grad_clip=None, name=None, exclude_from_weight_decay=None, epsilon=0, multi_precision=False, rescale_grad=1.0): assert learning_rate is not None assert momentum is not None super(LarsMomentumOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) self.type = "lars_momentum" self._momentum = momentum self._lars_coeff = float(lars_coeff) self._lars_weight_decay = float(lars_weight_decay) self._epsilon = float(epsilon) if exclude_from_weight_decay is None: self._exclude_from_weight_decay = [] else: self._exclude_from_weight_decay = exclude_from_weight_decay self._multi_precision = multi_precision self._rescale_grad = float(rescale_grad) self._master_weights = {} def _create_master_weight(self, param): if param.name in self._master_weights: var = self._master_weights[param.name] else: assert isinstance(self.helper, LayerHelper) var_name = param.name + '_fp32_master' var_name = unique_name.generate(var_name) var = layers.create_global_var( name=var_name, shape=param.shape, value=0, dtype='float32', persistable=True) block = self.helper.startup_program.global_block() block.append_op( type="cast", inputs={"X": [param]}, outputs={"Out": [var]}, attrs={ "in_dtype": param.dtype, "out_dtype": core.VarDesc.VarType.FP32 }) self._master_weights[param.name] = var return var def _get_accumulator(self, name, param): """Utility function to fetch an accumulator for a parameter Args: name: name of the accumulator param: parameter variable for which accumulator is to be fetched Returns: accumulator variable for the parameter """ if self._name is not None: name = self._name + "_" + name find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16 target_param = self._master_weights[ param.name] if find_master else param target_name = target_param.name if (name not in self._accumulators or target_name not in self._accumulators[name]): raise Exception("Accumulator {} does not exist for parameter {}". format(name, target_name)) return self._accumulators[name][target_name] def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) for p in parameters: if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16: master_p = self._create_master_weight(p) self._add_accumulator(self._velocity_acc_str, master_p) continue if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision: warnings.warn( "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence." "Consider using multi_precision=True option of the Lars optimizer." ) self._add_accumulator(self._velocity_acc_str, p) def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) _lars_weight_decay = self._lars_weight_decay param_name = param_and_grad[0].name if len(self._exclude_from_weight_decay) > 0: for name in self._exclude_from_weight_decay: if name in param_name: _lars_weight_decay = 0.0 break velocity_acc = self._get_accumulator(self._velocity_acc_str, param_and_grad[0]) lr = self._create_param_lr(param_and_grad) find_master = self._multi_precision and param_and_grad[ 0].dtype == core.VarDesc.VarType.FP16 master_weight = (self._master_weights[param_and_grad[0].name] if find_master else None) attrs = { "mu": self._momentum, "lars_coeff": self._lars_coeff, "lars_weight_decay": [_lars_weight_decay], "multi_precision": find_master, "epsilon": self._epsilon, "rescale_grad": self._rescale_grad } inputs = { "Param": param_and_grad[0], "Grad": param_and_grad[1], "Velocity": velocity_acc, "LearningRate": lr } outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc} if find_master: inputs["MasterParam"] = master_weight outputs["MasterParamOut"] = master_weight if framework._non_static_mode(): tmp, tmp2 = _C_ops.lars_momentum( [param_and_grad[0]], [param_and_grad[1]], [velocity_acc], [lr], [param_and_grad[0]], [velocity_acc], "mu", self._momentum, "lars_coeff", self._lars_coeff, "lars_weight_decay", [_lars_weight_decay], "multi_precision", find_master, "epsilon", self._epsilon, "rescale_grad", self._rescale_grad) else: # create the momentum optimize op momentum_op = block.append_op( type=self.type, inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) return momentum_op class AdagradOptimizer(Optimizer): r""" The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign different learning rates to individual parameters. The parameter ``param_out`` update rule with gradient ``grad``: .. math:: moment\_out &= moment + grad * grad param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon} Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic Optimization `_. The original paper does not have the ``epsilon`` attribute. It is added here in our implementation as also proposed `Per-parameter adaptive learning rate methods `_ for numerical stability to avoid the division by zero error. Args: learning_rate (float|Variable): The learning rate used to update ``Parameter``. It can be a float value or a ``Variable`` with a float type. epsilon (float, optional): A small float value for numerical stability. The default value is 1e-06. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. The default value is None. initial_accumulator_value (float, optional): Initial value for moment accumulator. The default value is 0.0. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) inp = fluid.data(name="inp", shape=[2, 2]) out = fluid.layers.fc(inp, size=3) out = fluid.layers.reduce_sum(out) optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2) optimizer.minimize(out) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) exe.run( feed={"inp": np_inp}, fetch_list=[out.name]) """ _moment_acc_str = "moment" def __init__(self, learning_rate, epsilon=1.0e-6, parameter_list=None, regularization=None, grad_clip=None, name=None, initial_accumulator_value=0.0): assert learning_rate is not None assert epsilon is not None super(AdagradOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) self.type = "adagrad" self._epsilon = epsilon self.initial_accumulator_value = initial_accumulator_value def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) for p in parameters: self._add_accumulator( self._moment_acc_str, p, fill_value=self.initial_accumulator_value) def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) moment_acc = self._get_accumulator(self._moment_acc_str, param_and_grad[0]) if framework._non_static_mode(): _C_ops.adagrad(param_and_grad[0], param_and_grad[1], moment_acc, self._create_param_lr(param_and_grad), param_and_grad[0], moment_acc, "epsilon", self._epsilon) else: # Create the adagrad optimizer op adagrad_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "Moment": moment_acc, "LearningRate": self._create_param_lr(param_and_grad) }, outputs={ "ParamOut": param_and_grad[0], "MomentOut": moment_acc }, attrs={"epsilon": self._epsilon}, stop_gradient=True) return adagrad_op class AdamOptimizer(Optimizer): r""" The Adam optimizer uses an optimization described at the end of section 2 of `Adam paper `_ , it can dynamically adjusts the learning rate of each parameter using the 1st moment estimates and the 2nd moment estimates of the gradient. The parameter ``param_out`` update rule with gradient ``grad``: .. math:: t & = t + 1 moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad learning\_rate & = learning\_rate * \\ \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t} param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} Related paper: `Adam: A Method for Stochastic Optimization `_ Args: learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``. It can be a float value or a ``Variable`` with a float type. The default value is 0.001. beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates. It should be a float number or a Variable with shape [1] and data type as float32. The default value is 0.9. beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates. It should be a float number or a Variable with shape [1] and data type as float32. The default value is 0.999. epsilon (float|Tensor, optional): A small float value for numerical stability. It should be a float number or a Variable with shape [1] and data type as float32. The default value is 1e-08. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. The default value is None. lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators. The accumulators are updated at every step. Every element of the two moving-average is updated in both dense mode and sparse mode. If the size of parameter is very large, then the update may be very slow. The lazy mode only update the element that has gradient in current mini-batch, so it will be much more faster. But this mode has different semantics with the original Adam algorithm and may lead to different result. The default value is False. use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow for whole model instead of creating beta_pow for each parameter. Default is false. flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false. align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means use same align_size as allocator. Examples: .. code-block:: python import paddle import paddle.fluid as fluid place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = fluid.data(name='x', shape=[None, 13], dtype='float32') y = fluid.data(name='y', shape=[None, 1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) adam_optimizer = fluid.optimizer.AdamOptimizer(0.01) adam_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list) .. code-block:: python # Adam with beta1/beta2 as Variable import paddle import paddle.fluid as fluid import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = fluid.data(name='x', shape=[None, 13], dtype='float32') y = fluid.data(name='y', shape=[None, 1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) # define beta decay variable def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init): global_step = lr_scheduler._decay_step_counter() beta1 = fluid.layers.create_global_var( shape=[1], value=float(beta1_init), dtype='float32', # set persistable for save checkpoints and resume persistable=True, name="beta1") beta2 = fluid.layers.create_global_var( shape=[1], value=float(beta2_init), dtype='float32', # set persistable for save checkpoints and resume persistable=True, name="beta2") epsilon = fluid.layers.create_global_var( shape=[1], value=float(epsilon_init), dtype='float32', # set persistable for save checkpoints and resume persistable=True, name="epsilon") div_res = global_step / decay_steps decayed_beta1 = beta1_init * (decay_rate**div_res) decayed_beta2 = beta2_init * (decay_rate**div_res) fluid.layers.assign(decayed_beta1, beta1) fluid.layers.assign(decayed_beta2, beta2) return beta1, beta2, epsilon beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8) adam_optimizer = fluid.optimizer.AdamOptimizer( learning_rate=0.01, beta1=beta1, beta2=beta2, epsilon=epsilon) adam_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list) """ _moment1_acc_str = "moment1" _moment2_acc_str = "moment2" _beta1_pow_acc_str = "beta1_pow_acc" _beta2_pow_acc_str = "beta2_pow_acc" def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, parameter_list=None, regularization=None, grad_clip=None, name=None, lazy_mode=False, use_global_beta_pow=False, flatten_param_grads=False, align_size=-1): assert learning_rate is not None assert beta1 is not None assert beta2 is not None assert epsilon is not None super(AdamOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, flatten_param_grads=flatten_param_grads, align_size=align_size, name=name) self.type = "adam" self._beta1 = beta1 self._beta2 = beta2 self._epsilon = epsilon self._lazy_mode = lazy_mode self._use_global_beta_pow = use_global_beta_pow def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) # Create accumulator tensors for first and second moments for p in parameters: self._add_accumulator(self._moment1_acc_str, p) self._add_accumulator(self._moment2_acc_str, p) if not self._use_global_beta_pow: self._add_accumulator( name=self._beta1_pow_acc_str, param=p, fill_value=0.9 if isinstance(self._beta1, Variable) \ else self._beta1, shape=[1], type=core.VarDesc.VarType.LOD_TENSOR, device='cpu') self._add_accumulator( name=self._beta2_pow_acc_str, param=p, fill_value=0.999 if isinstance(self._beta2, Variable) \ else self._beta2, shape=[1], type=core.VarDesc.VarType.LOD_TENSOR, device='cpu') if self._use_global_beta_pow: self._add_global_accumulator( name=self._beta1_pow_acc_str, fill_value=0.9 if isinstance(self._beta1, Variable) \ else self._beta1, shape=[1], type=core.VarDesc.VarType.LOD_TENSOR, device='cpu') self._add_global_accumulator( name=self._beta2_pow_acc_str, fill_value=0.999 if isinstance(self._beta2, Variable) \ else self._beta2, shape=[1], type=core.VarDesc.VarType.LOD_TENSOR, device='cpu') def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) moment1 = self._get_accumulator(self._moment1_acc_str, param_and_grad[0]) moment2 = self._get_accumulator(self._moment2_acc_str, param_and_grad[0]) if self._use_global_beta_pow: beta1_pow_acc = self._get_global_accumulator( self._beta1_pow_acc_str) beta2_pow_acc = self._get_global_accumulator( self._beta2_pow_acc_str) else: beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str, param_and_grad[0]) beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str, param_and_grad[0]) lr = self._create_param_lr(param_and_grad) # create the adam optimize op if framework._non_static_mode(): _beta1 = self._beta1 if not isinstance( self._beta1, Variable) else self._beta1.numpy().item(0) _beta2 = self._beta2 if not isinstance( self._beta2, Variable) else self._beta2.numpy().item(0) master_weight = None _, _, _, _, _, _ = _C_ops.adam( param_and_grad[0], param_and_grad[1], lr, moment1, moment2, beta1_pow_acc, beta2_pow_acc, master_weight, param_and_grad[0], moment1, moment2, beta1_pow_acc, beta2_pow_acc, master_weight, 'epsilon', self._epsilon, 'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread', 1000, 'beta1', _beta1, 'beta2', _beta2, 'use_global_beta_pow', self._use_global_beta_pow) return None inputs = { "Param": [param_and_grad[0]], "Grad": [param_and_grad[1]], "LearningRate": [lr], "Moment1": [moment1], "Moment2": [moment2], "Beta1Pow": [beta1_pow_acc], "Beta2Pow": [beta2_pow_acc] } # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow found_inf = self._get_auxiliary_var('found_inf') if found_inf: inputs['SkipUpdate'] = found_inf outputs = { "ParamOut": [param_and_grad[0]], "Moment1Out": [moment1], "Moment2Out": [moment2], "Beta1PowOut": [beta1_pow_acc], "Beta2PowOut": [beta2_pow_acc], } attrs = { "lazy_mode": self._lazy_mode, "min_row_size_to_use_multithread": 1000, 'use_global_beta_pow': self._use_global_beta_pow } if isinstance(self._beta1, Variable): inputs['Beta1Tensor'] = self._beta1 else: attrs['beta1'] = self._beta1 if isinstance(self._beta2, Variable): inputs['Beta2Tensor'] = self._beta2 else: attrs['beta2'] = self._beta2 if isinstance(self._epsilon, Variable): inputs['EpsilonTensor'] = self._epsilon else: attrs['epsilon'] = self._epsilon adam_op = block.append_op( type=self.type, inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) return adam_op def _finish_update(self, block, parameters_and_grads): r"""Update beta1_pow and beta2_pow accumulator """ assert isinstance(block, framework.Block) if self._use_global_beta_pow: beta1_pow_acc = self._get_global_accumulator( self._beta1_pow_acc_str) beta2_pow_acc = self._get_global_accumulator( self._beta2_pow_acc_str) with block.program._optimized_guard([]): inputs = {"X": beta1_pow_acc} outputs = {"Out": beta1_pow_acc} attrs = {} if isinstance(self._beta1, Variable): inputs["Y"] = self._beta1 # use elementwise_mul for better performance block.append_op( type="elementwise_mul", inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) else: attrs['scale'] = self._beta1 block.append_op( type="scale", inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) inputs = {"X": beta2_pow_acc} outputs = {"Out": beta2_pow_acc} attrs = {} if isinstance(self._beta2, Variable): inputs["Y"] = self._beta2 # use elementwise_mul for better performance block.append_op( type="elementwise_mul", inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) else: attrs['scale'] = self._beta2 block.append_op( type="scale", inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) class AdamaxOptimizer(Optimizer): r""" The Adamax optimizer is implemented based on the Adamax Optimization in Section 7 of `Adam paper `_. The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm, which makes the learning rate update algorithm more stable and simple. The parameter ``param_out`` update rule with gradient ``grad``: .. math:: t & = t + 1 moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|) learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t} param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out} Related paper: `Adam: A Method for Stochastic Optimization `_ The original paper does not have an ``epsilon`` attribute, it is added here for numerical stability to prevent the division by 0 error. Args: learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``. It can be a float value or a ``Variable`` with a float type. The default value is 0.001. beta1 (float, optional): The exponential decay rate for the 1st moment estimates. The default value is 0.9. beta2 (float, optional): The exponential decay rate for the 2nd moment estimates. The default value is 0.999. epsilon (float, optional): A small float value for numerical stability. The default value is 1e-08. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. The default value is None. **Notes**: **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.** Examples: .. code-block:: python import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): data = fluid.data(name='X', shape=[None, 1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2) adam.minimize(loss) # Run the startup program once and only once. exe.run(startup_program) x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) """ _moment_acc_str = "moment" _inf_norm_acc_str = "inf_norm" _beta1_pow_acc_str = "beta1_pow_acc" def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, parameter_list=None, regularization=None, grad_clip=None, name=None): assert learning_rate is not None assert beta1 is not None assert beta2 is not None assert epsilon is not None super(AdamaxOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) self.type = "adamax" self._beta1 = beta1 self._beta2 = beta2 self._epsilon = epsilon def _create_accumulators(self, block, parameters): # Create accumulator tensors for first moment and infinity norm for p in parameters: self._add_accumulator(self._moment_acc_str, p) self._add_accumulator(self._inf_norm_acc_str, p) self._add_accumulator( name=self._beta1_pow_acc_str, param=p, fill_value=self._beta1, shape=[1]) def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0]) inf_norm = self._get_accumulator(self._inf_norm_acc_str, param_and_grad[0]) beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str, param_and_grad[0]) if framework._non_static_mode(): _C_ops.adamax(param_and_grad[0], param_and_grad[1], self._create_param_lr(param_and_grad), moment, inf_norm, beta1_pow_acc, param_and_grad[0], moment, inf_norm, "beta1", self._beta1, "beta2", self._beta2, "epsilon", self._epsilon) else: # create the adamax optimize op adamax_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "LearningRate": self._create_param_lr(param_and_grad), "Moment": moment, "InfNorm": inf_norm, "Beta1Pow": beta1_pow_acc }, outputs={ "ParamOut": param_and_grad[0], "MomentOut": moment, "InfNormOut": inf_norm }, attrs={ "beta1": self._beta1, "beta2": self._beta2, "epsilon": self._epsilon }, stop_gradient=True) return adamax_op def _finish_update(self, block, parameters_and_grads): """Update Beta1 Power accumulator """ assert isinstance(block, framework.Block) for param, grad in parameters_and_grads: if grad is None or param.trainable is False: continue with param.block.program._optimized_guard( [param, grad]), name_scope('adamx'): beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str, param) if framework._non_static_mode(): if framework.in_dygraph_mode(): tmp = _C_ops.final_state_scale(beta1_pow_acc, self._beta1, 0.0, True) else: tmp = _C_ops.scale(beta1_pow_acc, "scale", self._beta1) beta1_pow_acc.copy_(tmp, False) else: block.append_op( type="scale", inputs={"X": beta1_pow_acc}, outputs={"Out": beta1_pow_acc}, attrs={"scale": self._beta1}, stop_gradient=True) class DpsgdOptimizer(Optimizer): r""" We implement the Dpsgd optimizer according to CCS16 paper - Deep Learning with Differential Privacy. Examples: .. code-block:: python import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): data = fluid.layers.data(name='X', shape=[1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0) optimizer.minimize(loss) # Run the startup program once and only once. exe.run(startup_program) x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) Args: learning_rate (float|Variable): the learning rate used to update parameters. \ Can be a float value or a Variable with one float value as data element. clip (float): clipping threshold batch_size (float): batch size. sigma (float): for gaussian noise. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. Notes: Currently, DpsgdOptimizer doesn't support sparse parameter optimization. """ def __init__(self, learning_rate=0.001, clip=0.9, batch_size=0.999, sigma=1e-8, parameter_list=None): assert learning_rate is not None assert clip is not None assert batch_size is not None assert sigma is not None super(DpsgdOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list) self.type = "dpsgd" self._clip = clip self._batch_size = batch_size self._sigma = sigma ''' Note(wangzhongpu): This property is only used for debugging, do not need to set it! Dpsgd operator use time(NULL) as random seed to generate random number. However, during debugging, we need determinated result, so we will set self._seed to a fixed number. ''' self._seed = None def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) # create the dpsgd optimize op if self._seed == None: self._seed = 0 if framework._non_static_mode(): _C_ops.dpsgd(param_and_grad[0], param_and_grad[1], self._create_param_lr(param_and_grad), param_and_grad[0], "clip", self._clip, "batch_size", self._batch_size, "sigma", self._sigma, "seed", self._seed) else: dpsgd_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "LearningRate": self._create_param_lr(param_and_grad) }, outputs={"ParamOut": param_and_grad[0]}, attrs={ "clip": self._clip, "batch_size": self._batch_size, "sigma": self._sigma, "seed": self._seed }, stop_gradient=True) return dpsgd_op class DecayedAdagradOptimizer(Optimizer): r""" The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces the decay rate to solve the problem of a sharp drop in the learning rate during model training when using the AdagradOptimizer. The parameter ``param_out`` update rule with gradient ``grad``: .. math:: moment\_out & = decay * moment + (1 - decay) * grad * grad param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon} Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic Optimization `_. The original paper does not have an ``epsilon`` attribute. It is added here for numerical stability to avoid the division by zero error. Args: learning_rate (float|Variable): The learning rate used to update ``Parameter``. It can be a float value or a ``Variable`` with a float type. decay (float, optional): The decay rate. The default value is 0.95. epsilon (float, optional): A small float value for numerical stability. The default value is 1e-06. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. The default value is None. **Notes**: **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.** Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data( name='x', shape=[None, 10], dtype='float32' ) trans = fluid.layers.fc( x, 100 ) cost = fluid.layers.reduce_mean( trans ) optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2) optimizer.minimize(cost) """ _moment_acc_str = "moment" def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, parameter_list=None, regularization=None, grad_clip=None, name=None): assert learning_rate is not None assert decay is not None assert epsilon is not None super(DecayedAdagradOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) self.type = "decayed_adagrad" self._decay = decay self._epsilon = epsilon def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) for p in parameters: self._add_accumulator(self._moment_acc_str, p) def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) moment_acc = self._get_accumulator(self._moment_acc_str, param_and_grad[0]) if framework._non_static_mode(): _C_ops.decayed_adagrad( param_and_grad[0], param_and_grad[1], moment_acc, self._create_param_lr(param_and_grad), param_and_grad[0], moment_acc, "epsilon", self._epsilon, "decay", self._decay) else: # Create the decayed adagrad optimizer op decayed_adagrad_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "Moment": moment_acc, "LearningRate": self._create_param_lr(param_and_grad) }, outputs={ "ParamOut": param_and_grad[0], "MomentOut": moment_acc }, attrs={"epsilon": self._epsilon, "decay": self._decay}, stop_gradient=True) return decayed_adagrad_op class AdadeltaOptimizer(Optimizer): r""" **Notes: This API does not support sparse parameter optimization.** Adadelta Optimizer. Please refer to this for details: `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD `_. The update is done as follows: .. math:: E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) } E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2 Args: learning_rate (float|Variable): global learning rate. epsilon (float): a small float number for numeric stability. Default 1.0e-6. rho (float): a floating point value indicating the decay rate. Default 0.95. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle.fluid as fluid image = fluid.data(name='image', shape=[None, 28], dtype='float32') fc = fluid.layers.fc(image, size=10) cost = fluid.layers.reduce_mean(fc) optimizer = fluid.optimizer.Adadelta( learning_rate=0.0003, epsilon=1.0e-6, rho=0.95) # optimizer_ops is a list of optimizer operators to update parameters # params_grads is a list of (param, param_grad), where param is each # parameter and param_grad is the gradient variable of param. optimizer_ops, params_grads = optimizer.minimize(cost) """ _avg_squared_grad_acc_str = "_avg_squared_grad" _avg_squared_update_acc_str = "_avg_squared_update" def __init__(self, learning_rate, epsilon=1.0e-6, rho=0.95, parameter_list=None, regularization=None, grad_clip=None, name=None): if learning_rate is None: raise ValueError("learning_rate is not set.") if epsilon is None: raise ValueError("epsilon is not set.") if rho is None: raise ValueError("rho is not set.") super(AdadeltaOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) self.type = "adadelta" self._epsilon = epsilon self._rho = rho def _create_accumulators(self, block, parameters): if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") for p in parameters: self._add_accumulator(self._avg_squared_grad_acc_str, p) self._add_accumulator(self._avg_squared_update_acc_str, p) def _append_optimize_op(self, block, param_and_grad): if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") avg_squared_grad_acc = self._get_accumulator( self._avg_squared_grad_acc_str, param_and_grad[0]) avg_squared_update_acc = self._get_accumulator( self._avg_squared_update_acc_str, param_and_grad[0]) if framework._non_static_mode(): _C_ops.adadelta(param_and_grad[0], param_and_grad[1], avg_squared_grad_acc, avg_squared_update_acc, param_and_grad[0], avg_squared_grad_acc, avg_squared_update_acc, "epsilon", self._epsilon, "rho", self._rho) else: # Create the adadelta optimizer op adadelta_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "AvgSquaredGrad": avg_squared_grad_acc, "AvgSquaredUpdate": avg_squared_update_acc }, outputs={ "ParamOut": param_and_grad[0], "AvgSquaredGradOut": avg_squared_grad_acc, "AvgSquaredUpdateOut": avg_squared_update_acc }, attrs={"epsilon": self._epsilon, "rho": self._rho}, stop_gradient=True) return adadelta_op class RMSPropOptimizer(Optimizer): r""" Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method. The original slides proposed RMSProp: Slide 29 of http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf . The original equation is as follows: .. math:: r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w) The first equation calculates moving average of the squared gradient for each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`. In some cases, adding a momentum term :math: `\\beta` is beneficial. In our implementation, Nesterov momentum is used: .. math:: r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w) w & = w - v(w, t) if centered is True: .. math:: r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w) v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 + \\epsilon}} \\nabla Q_{i}(w) w & = w - v(w, t) where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95 and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a smoothing term to avoid division by zero, usually set somewhere in range from 1e-4 to 1e-8. Parameters: learning_rate(float): Global learning rate. rho(float): rho is :math: `\\rho` in equation, default is 0.95. epsilon(float): :math: `\\epsilon` in equation is smoothing term to avoid division by zero, default is 1e-6. momentum(float): :math:`\\beta` in equation is the momentum term, default is 0.0. centered(bool): If True, gradients are normalized by the estimated variance of the gradient; if False, by the uncentered second moment. Setting this to True may help with training, but is slightly more expensive in terms of computation and memory. Defaults to False. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): This parameter is used by developers to print debugging information. \ For details, please refer to :ref:`api_guide_Name`. Default is None. Raises: ValueError: If learning_rate, rho, epsilon, momentum are None. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1) rms_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list) """ _momentum_acc_str = "momentum" _mean_square_acc_str = "mean_square" _mean_grad_acc_str = "mean_grad" def __init__(self, learning_rate, rho=0.95, epsilon=1.0e-6, momentum=0.0, centered=False, parameter_list=None, regularization=None, grad_clip=None, name=None): super(RMSPropOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) if learning_rate is None: raise ValueError("learning_rate is not set.") if rho is None: raise ValueError("rho is not set.") if epsilon is None: raise ValueError("epsilon is not set.") if momentum is None: raise ValueError("momentum is not set.") self.type = "rmsprop" self._rho = rho self._epsilon = epsilon self._momentum = momentum self._centered = centered def _create_accumulators(self, block, parameters): if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") for p in parameters: self._add_accumulator(self._momentum_acc_str, p) self._add_accumulator(self._mean_square_acc_str, p) self._add_accumulator(self._mean_grad_acc_str, p) def _append_optimize_op(self, block, param_and_grad): if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") momentum_acc = self._get_accumulator(self._momentum_acc_str, param_and_grad[0]) mean_square_acc = self._get_accumulator(self._mean_square_acc_str, param_and_grad[0]) mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str, param_and_grad[0]) if framework._non_static_mode(): _C_ops.rmsprop( param_and_grad[0], mean_square_acc, self._create_param_lr(param_and_grad), param_and_grad[1], momentum_acc, param_and_grad[0], momentum_acc, mean_square_acc, mean_grad_acc, "epsilon", self._epsilon, "decay", self._rho, "momentum", self._momentum, "centered", self._centered) else: rmsprop_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "Moment": momentum_acc, "MeanSquare": mean_square_acc, "MeanGrad": mean_grad_acc, "LearningRate": self._create_param_lr(param_and_grad), }, outputs={ "ParamOut": param_and_grad[0], "MomentOut": momentum_acc, "MeanSquareOut": mean_square_acc, "MeanGradOut": mean_grad_acc }, attrs={ "epsilon": self._epsilon, "decay": self._rho, "momentum": self._momentum, "centered": self._centered }, stop_gradient=True) return rmsprop_op class FtrlOptimizer(Optimizer): r""" FTRL (Follow The Regularized Leader) Optimizer. The paper that proposed Follow The Regularized Leader (FTRL): (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf) .. math:: &new\_accum = squared\_accum + grad^2 &if (lr\_power == -0.5): &\quad linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param} &else: &\quad linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param} &x = l1 * sign(linear\_accum) - linear\_accum &if (lr\_power == -0.5): &\quad y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2) &\quad pre\_shrink = \\frac{x}{y} &\quad param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) &else: &\quad y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2) &\quad pre\_shrink = \\frac{x}{y} &\quad param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) &squared\_accum += grad^2 Parameters: learning_rate (float|Variable): Global learning rate. l1 (float): L1 regularization strength, default is 0.0. l2 (float): L2 regularization strength, default is 0.0. lr_power (float): Learning Rate Power, default is -0.5. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): This parameter is used by developers to print debugging information. \ For details, please refer to :ref:`api_guide_Name`. Default is None. Raises: ValueError: If learning_rate, rho, epsilon, momentum are None. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1) ftrl_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list) NOTE: Currently, FtrlOptimizer doesn't support sparse parameter optimization. """ _squared_acc_str = "squared" _linear_acc_str = "linear" def __init__(self, learning_rate, l1=0.0, l2=0.0, lr_power=-0.5, parameter_list=None, regularization=None, grad_clip=None, name=None): super(FtrlOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, name=name) if learning_rate is None: raise ValueError("learning_rate is not set.") self.type = "ftrl" self._l1 = l1 self._l2 = l2 self._lr_power = lr_power def _create_accumulators(self, block, parameters): if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") for p in parameters: self._add_accumulator(self._squared_acc_str, p) self._add_accumulator(self._linear_acc_str, p) def _append_optimize_op(self, block, param_and_grad): if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") squared_acc = self._get_accumulator(self._squared_acc_str, param_and_grad[0]) linear_acc = self._get_accumulator(self._linear_acc_str, param_and_grad[0]) if framework._non_static_mode(): _C_ops.ftrl(param_and_grad[0], squared_acc, linear_acc, param_and_grad[1], self._create_param_lr(param_and_grad), param_and_grad[0], squared_acc, linear_acc, "l1", self._l1, "l2", self._l2, "lr_power", self._lr_power) else: ftrl_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "SquaredAccumulator": squared_acc, "LinearAccumulator": linear_acc, "LearningRate": self._create_param_lr(param_and_grad), }, outputs={ "ParamOut": param_and_grad[0], "SquaredAccumOut": squared_acc, "LinearAccumOut": linear_acc }, attrs={ "l1": self._l1, "l2": self._l2, "lr_power": self._lr_power }, stop_gradient=True) return ftrl_op class LambOptimizer(AdamOptimizer): r""" LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer. LAMB Optimizer is designed to scale up the batch size of training without losing accuracy, which supports adaptive element-wise updating and accurate layer-wise correction. For more information, please refer to `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes `_ . The updating of parameters follows: .. math:: m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t v_t &= \\beta_2 v_{t - 1} + (1 - \\beta_2)g_t^2 m_t &= \\frac{m_t}{\\beta_1^t} v_t &= \\frac{v_t}{\\beta_2^t} r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon} w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1}) where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the learning rate, :math:`\\lambda` the LAMB weight decay rate. Args: learning_rate (float|Variable, optional): the learning rate used to update parameters. \ Can be a float value or a Variable with data type float32. Default 0.001. lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01. beta1 (float, optional): The exponential decay rate for the 1st moment estimates. Default 0.9. beta2 (float, optional): The exponential decay rate for the 2nd moment estimates. Default 0.999. epsilon (float, optional): A small float value for numerical stability. Default 1e-6. parameter_list (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` , :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping. exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight decay when **exclude_from_weight_decay_fn(parameter)** returns true. Default None. name(str|None): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.data(name='x', shape=[-1, 5], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) cost = fluid.layers.mean(hidden) def exclude_fn(param): return param.name.endswith('.b_0') optimizer = fluid.optimizer.Lamb(learning_rate=0.002, exclude_from_weight_decay_fn=exclude_fn) optimizer.minimize(cost) """ _moment1_acc_str = "moment1" _moment2_acc_str = "moment2" _beta1_pow_acc_str = "beta1_pow_acc" _beta2_pow_acc_str = "beta2_pow_acc" def __init__(self, learning_rate=0.001, lamb_weight_decay=0.01, beta1=0.9, beta2=0.999, epsilon=1e-6, parameter_list=None, regularization=None, grad_clip=None, exclude_from_weight_decay_fn=None, name=None): assert learning_rate is not None assert lamb_weight_decay is not None assert beta1 is not None assert beta2 is not None assert epsilon is not None super(LambOptimizer, self).__init__( learning_rate=learning_rate, parameter_list=parameter_list, regularization=regularization, grad_clip=grad_clip, beta1=beta1, beta2=beta2, epsilon=epsilon, name=name) self.type = "lamb" self._weight_decay = lamb_weight_decay self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) block.program._use_lamb = True moment1 = self._get_accumulator(self._moment1_acc_str, param_and_grad[0]) moment2 = self._get_accumulator(self._moment2_acc_str, param_and_grad[0]) beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str, param_and_grad[0]) beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str, param_and_grad[0]) if self._exclude_from_weight_decay_fn is not None \ and self._exclude_from_weight_decay_fn(param_and_grad[0]): weight_decay = 0.0 else: weight_decay = self._weight_decay lr = self._create_param_lr(param_and_grad) master_weight = None if framework._non_static_mode(): _C_ops.lamb(param_and_grad[0], param_and_grad[1], lr, moment1, moment2, beta1_pow_acc, beta2_pow_acc, master_weight, param_and_grad[0], moment1, moment2, beta1_pow_acc, beta2_pow_acc, master_weight, 'beta1', self._beta1, 'beta2', self._beta2, 'epsilon', self._epsilon, 'weight_decay', weight_decay) return None # create the lamb optimize op lamb_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "LearningRate": lr, "Moment1": moment1, "Moment2": moment2, "Beta1Pow": beta1_pow_acc, "Beta2Pow": beta2_pow_acc }, outputs={ "ParamOut": param_and_grad[0], "Moment1Out": moment1, "Moment2Out": moment2, "Beta1PowOut": beta1_pow_acc, "Beta2PowOut": beta2_pow_acc }, attrs={ "beta1": self._beta1, "beta2": self._beta2, "epsilon": self._epsilon, "weight_decay": weight_decay }, stop_gradient=True) return lamb_op # We short the class name, since users will use the optimizer with the package # name. The sample code: # # import paddle.fluid as fluid # # sgd = fluid.optimizer.SGD(...) # # It is no need to add an `Optimizer` as the class suffix SGD = SGDOptimizer Momentum = MomentumOptimizer Adagrad = AdagradOptimizer Adam = AdamOptimizer Adamax = AdamaxOptimizer Dpsgd = DpsgdOptimizer DecayedAdagrad = DecayedAdagradOptimizer Adadelta = AdadeltaOptimizer RMSProp = RMSPropOptimizer Ftrl = FtrlOptimizer LarsMomentum = LarsMomentumOptimizer Lamb = LambOptimizer class ModelAverage(Optimizer): r""" :api_attr: Static Graph The ModelAverage optimizer accumulates specific continuous historical parameters during training. The accumulated historical range can be controlled by the passed ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction, which usually can improve the accuracy of the prediction. Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved in a temporary variable, can be applied to the current model's ``Parameter`` by calling the ``apply()`` method, and the current model ``Parameter`` can be restored by calling the ``restore()`` method. The window size for calculating the average is determined by ``average_window_rate``, ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates). When the cumulative times (num_accumulates) is greater than the specific window threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0. The following example will help to understand the role of these arguments: :: if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate): num_accumulates = 0 In the above conditional judgment statement, ``num_accumulates`` indicates the current accumulated number, which can be abstractly understood as the length of the cumulative window. The length of the window must be at least the length set by the ``min_average_window`` argument, and cannot exceed the length specified by the ``max_average_window`` argument or ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter`` update times, ``average_window_rate`` is a coefficient that calculates the length of the window. Args: average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times. min_average_window (int, optional): the minimum size of average window length. The default value is 10000. max_average_window (int, optional): The maximum size of average window length. The default value is 10000. regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \ :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \ regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \ ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. The default value is None. Examples: .. code-block:: python import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): # build net data = fluid.data(name='X', shape=[None, 1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1) optimizer.minimize(loss) # build ModelAverage optimizer model_average = fluid.optimizer.ModelAverage(0.15, min_average_window=10000, max_average_window=12500) exe.run(startup_program) for i in range(12500): x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) # apply ModelAverage with model_average.apply(exe): x = numpy.random.random(size=(10, 1)).astype('float32') exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) """ def __init__(self, average_window_rate, min_average_window=10000, max_average_window=10000, regularization=None, name=None): if framework._non_static_mode(): raise Exception("In dygraph, don't support ModelAverage.") super(ModelAverage, self).__init__( 0.0, regularization=regularization, name=name) self.average_window = average_window_rate self.min_average_window = min_average_window self.max_average_window = max_average_window self.params_grads = [] for param in framework.default_main_program().global_block( ).all_parameters(): if param.do_model_average != False: grad = param.block.create_var( name=unique_name.generate_with_ignorable_key(".".join( [param.name, 'tmp'])), dtype=param.dtype, persistable=False, stop_gradient=True) self.params_grads.append((param, grad)) for param, grad in self.params_grads: if grad is None: continue with param.block.program._optimized_guard( [param, grad]), name_scope('move_average'): self._append_average_accumulate_op(param) self.apply_program = Program() block = self.apply_program.global_block() with program_guard(main_program=self.apply_program): for param_grad in self.params_grads: self._add_average_apply_op(block, param_grad) self.restore_program = Program() block = self.restore_program.global_block() with program_guard(main_program=self.restore_program): for param_grad in self.params_grads: self._add_average_restore_op(block, param_grad) def _add_average_apply_op(self, block, param_grad): param = block._clone_variable(param_grad[0]) grad = block._clone_variable(param_grad[1]) sum_1 = block._clone_variable(self._get_accumulator('sum_1', param)) sum_2 = block._clone_variable(self._get_accumulator('sum_2', param)) sum_3 = block._clone_variable(self._get_accumulator('sum_3', param)) num_accumulates = block._clone_variable( self._get_accumulator('num_accumulates', param)) old_num_accumulates = block._clone_variable( self._get_accumulator('old_num_accumulates', param)) num_updates = block._clone_variable( self._get_accumulator('num_updates', param)) # backup param value to grad layers.assign(input=param, output=grad) # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates) tmp = layers.sum(x=[num_accumulates, old_num_accumulates]) sum = layers.sum(x=[sum_1, sum_2, sum_3]) tmp = layers.cast( x=tmp, dtype='float32' if self._dtype == None else self._dtype) sum = layers.cast( x=sum, dtype='float32' if self._dtype == None else self._dtype) ops._elementwise_div(x=sum, y=tmp, out=param) def _add_average_restore_op(self, block, param_grad): param = block._clone_variable(param_grad[0]) grad = block._clone_variable(param_grad[1]) layers.assign(input=grad, output=param) def _append_average_accumulate_op(self, param): self.helper = LayerHelper("average_accumulate") sum_1 = self._add_accumulator('sum_1', param) sum_2 = self._add_accumulator('sum_2', param) sum_3 = self._add_accumulator('sum_3', param) num_accumulates = self._add_accumulator( 'num_accumulates', param, dtype='int64', shape=[1]) old_num_accumulates = self._add_accumulator( 'old_num_accumulates', param, dtype='int64', shape=[1]) num_updates = self._add_accumulator( 'num_updates', param, dtype='int64', shape=[1]) self.helper.append_op( type='average_accumulates', inputs={ "param": param, "in_sum_1": sum_1, "in_sum_2": sum_2, "in_sum_3": sum_3, "in_num_accumulates": num_accumulates, "in_old_num_accumulates": old_num_accumulates, "in_num_updates": num_updates }, outputs={ "out_sum_1": sum_1, "out_sum_2": sum_2, "out_sum_3": sum_3, "out_num_accumulates": num_accumulates, "out_old_num_accumulates": old_num_accumulates, "out_num_updates": num_updates, }, attrs={ "average_window": self.average_window, "min_average_window": self.min_average_window, "max_average_window": self.max_average_window, }, stop_gradient=True) @signature_safe_contextmanager def apply(self, executor, need_restore=True): """ Apply the average of the cumulative ``Parameter`` to the parameters of the current model. Args: executor(fluid.Executor): The current network executor. need_restore(bool): Restore flag variable, if set to True, the network will restore the parameters of the network to the default value, if set to False, it will not be restored. The default value is True. Examples: .. code-block:: python import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): # build net data = fluid.data(name='X', shape=[None, 1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1) optimizer.minimize(loss) # build ModelAverage optimizer model_average = fluid.optimizer.ModelAverage(0.15, min_average_window=10000, max_average_window=12500) exe.run(startup_program) for i in range(12500): x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) # apply ModelAverage with model_average.apply(exe): x = numpy.random.random(size=(10, 1)).astype('float32') exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) """ executor.run(self.apply_program) try: yield finally: if need_restore: self.restore(executor) def restore(self, executor): """ Restore ``Parameter`` values of current model. Args: executor(fluid.Executor): The current network executor. Examples: .. code-block:: python import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): # build net data = fluid.data(name='X', shape=[None, 1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1) optimizer.minimize(loss) # build ModelAverage optimizer model_average = fluid.optimizer.ModelAverage(0.15, min_average_window=10000, max_average_window=12500) exe.run(startup_program) for i in range(12500): x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) # apply ModelAverage with model_average.apply(exe, False): x = numpy.random.random(size=(10, 1)).astype('float32') exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) # restore Parameters model_average.restore(exe) """ executor.run(self.restore_program) class ExponentialMovingAverage(object): r""" :api_attr: Static Graph Compute the moving average of parameters with exponential decay. Given a parameter :math:`\\theta`, its exponential moving average (EMA) will be .. math:: \\text{EMA}_0 & = 0 \\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t The average results calculated by **update()** method will be saved in temporary variables which are created and maintained by the object, and can be applied to parameters of current model by calling **apply()** method. And the **restore()** method is used to restore the parameters. **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be zero biased, which can be corrected by divided by a factor :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters when calling **apply()** method would be .. math:: \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t} **Decay rate scheduling**. A large decay rate very close to 1 would result in that the averages move very slowly. And a better strategy is to set a relative smaller decay rate in the very beginning. The argument **thres_steps** allows users to pass a Variable to schedule the decay rate, in this case, the actual decay rate becomes .. math:: \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}}) Usually **thres_steps** can be the global training steps. Args: decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999. thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None. name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Examples: .. code-block:: python import numpy import paddle import paddle.static as static from paddle.static import ExponentialMovingAverage paddle.enable_static() data = static.data(name='x', shape=[-1, 5], dtype='float32') hidden = static.nn.fc(x=data, size=10) cost = paddle.mean(hidden) test_program = static.default_main_program().clone(for_test=True) optimizer = paddle.optimizer.Adam(learning_rate=0.001) optimizer.minimize(cost) ema = ExponentialMovingAverage(0.999) ema.update() place = paddle.CPUPlace() exe = static.Executor(place) exe.run(static.default_startup_program()) for pass_id in range(3): for batch_id in range(6): data = numpy.random.random(size=(10, 5)).astype('float32') exe.run(program=static.default_main_program(), feed={'x': data}, fetch_list=[cost.name]) # usage 1 with ema.apply(exe): data = numpy.random.random(size=(10, 5)).astype('float32') exe.run(program=test_program, feed={'x': data}, fetch_list=[hidden.name]) # usage 2 with ema.apply(exe, need_restore=False): data = numpy.random.random(size=(10, 5)).astype('float32') exe.run(program=test_program, feed={'x': data}, fetch_list=[hidden.name]) ema.restore(exe) """ def __init__(self, decay=0.999, thres_steps=None, name=None): if framework._non_static_mode(): raise Exception( "In dygraph, don't support ExponentialMovingAverage.") self._decay = decay self._thres_steps = thres_steps self._name = name if name is not None else '' self._decay_var = self._get_ema_decay() self._step_counter_name = "@EMA_STEP_COUNTER@" self._params_tmps = [] for param in default_main_program().global_block().all_parameters(): if param.do_model_average != False: tmp = param.block.create_var( name=unique_name.generate(".".join( [self._name + param.name, 'ema_tmp'])), dtype=param.dtype, persistable=False, stop_gradient=True) self._params_tmps.append((param, tmp)) self._ema_vars = {} for param, tmp in self._params_tmps: with param.block.program._optimized_guard( [param, tmp]), name_scope('moving_average'): self._ema_vars[param.name] = self._create_ema_vars(param) self.apply_program = Program() block = self.apply_program.global_block() with program_guard(main_program=self.apply_program): decay_pow, global_step = self._get_decay_pow(block) for param, tmp in self._params_tmps: param = block._clone_variable(param) tmp = block._clone_variable(tmp) ema = block._clone_variable(self._ema_vars[param.name]) layers.assign(input=param, output=tmp) # bias correction with layers.control_flow.Switch() as switch: with switch.case(global_step > 0): layers.assign( output=param, input=ema / (1.0 - decay_pow)) with switch.default(): layers.assign(output=param, input=ema) self.restore_program = Program() block = self.restore_program.global_block() with program_guard(main_program=self.restore_program): for param, tmp in self._params_tmps: tmp = block._clone_variable(tmp) param = block._clone_variable(param) layers.assign(input=tmp, output=param) def _get_ema_decay(self): with default_main_program()._lr_schedule_guard(): decay_var = layers.tensor.create_global_var( shape=[1], value=self._decay, dtype='float32', persistable=True, name="scheduled_ema_decay_rate") if self._thres_steps is not None: decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0) with layers.control_flow.Switch() as switch: with switch.case(decay_t < self._decay): layers.tensor.assign(decay_t, decay_var) with switch.default(): layers.tensor.assign( np.array( [self._decay], dtype=np.float32), decay_var) return decay_var def _get_decay_pow(self, block): global_step = layers.create_global_var( name=self._step_counter_name, shape=[1], value=0, dtype='int64', persistable=True) global_step = layers.cast(global_step, "float32") decay_var = block._clone_variable(self._decay_var) decay_pow_acc = layers.elementwise_pow(decay_var, global_step) return decay_pow_acc, global_step def _create_ema_vars(self, param): param_ema = layers.create_global_var( name=unique_name.generate(self._name + param.name + '_ema'), shape=param.shape, value=0.0, dtype=param.dtype, persistable=True) return param_ema def update(self): """ Update Exponential Moving Average. Should only call this method in train program. """ global_step = layers.autoincreased_step_counter( counter_name=self._step_counter_name) param_master_emas = [] for param, tmp in self._params_tmps: with param.block.program._optimized_guard( [param, tmp]), name_scope('moving_average'): param_ema = self._ema_vars[param.name] if param.name + '.master' in self._ema_vars: master_ema = self._ema_vars[param.name + '.master'] param_master_emas.append([param_ema, master_ema]) else: ema_t = param_ema * self._decay_var + param * ( 1 - self._decay_var) layers.assign(input=ema_t, output=param_ema) # for fp16 params for param_ema, master_ema in param_master_emas: default_main_program().global_block().append_op( type="cast", inputs={"X": master_ema}, outputs={"Out": param_ema}, attrs={ "in_dtype": master_ema.dtype, "out_dtype": param_ema.dtype }) @signature_safe_contextmanager def apply(self, executor, need_restore=True): """ Apply moving average to parameters for evaluation. Args: executor (Executor): The Executor to execute applying. need_restore (bool, optional): Whether to restore parameters after applying. Default True. """ executor.run(self.apply_program) try: yield finally: if need_restore: self.restore(executor) def restore(self, executor): """Restore parameters. Args: executor (Executor): The Executor to execute restoring. """ executor.run(self.restore_program) class PipelineOptimizer(object): """ :api_attr: Static Graph Pipeline Optimizer: Make a program to run as pipeline, that is splitting a program into multiple sections (sub-programs) and each section run on a device to enable the training of large scale models and the use of heterogeneous devices. Meanwhile, all sections run in the stype of pipeline. Args: optimizer (Optimizer): The optimizer to use, such as SGD. num_microbatches (int): Number of microbatches. [Optional. Default:1]. start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0]. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers with fluid.device_guard("gpu:0"): x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0) y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0) data_loader = fluid.io.DataLoader.from_generator( feed_list=[x, y], capacity=64, use_double_buffer=True, iterable=False) emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False) emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False) with fluid.device_guard("gpu:1"): concat = layers.concat([emb_x, emb_y], axis=1) fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False) loss = layers.reduce_mean(fc) optimizer = fluid.optimizer.SGD(learning_rate=0.5) optimizer = fluid.optimizer.PipelineOptimizer(optimizer) optimizer.minimize(loss) def train_reader(): for _ in range(4): x = np.random.random(size=[1]).astype('int64') y = np.random.random(size=[1]).astype('int64') yield x, y data_loader.set_sample_generator(train_reader, batch_size=1) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) batch_size = 1 data_loader.start() exe.train_from_dataset( fluid.default_main_program()) data_loader.reset() """ def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0): self._device = 'cpu' if core.is_compiled_with_npu(): self._device = "npu" elif core.is_compiled_with_cuda(): self._device = "gpu" if framework._non_static_mode(): raise Exception("In dygraph, don't support PipelineOptimizer.") valid_optimizers = (Optimizer, paddle.optimizer.Optimizer, paddle.fluid.contrib.mixed_precision.decorator. OptimizerWithMixedPrecision) if not isinstance(optimizer, valid_optimizers): raise ValueError("The 'optimizer' parameter for " "PipelineOptimizer must be an instance of " "{}, but the given type is {}.".format( valid_optimizers, type(optimizer))) self._optimizer = optimizer # Get the original optimizer defined by users, such as SGD self._origin_optimizer = self._optimizer while hasattr(self._origin_optimizer, "inner_opt"): self._origin_optimizer = self._origin_optimizer.inner_opt assert num_microbatches >= 1, ( "num_microbatches must be a positive value.") self._num_microbatches = num_microbatches assert start_cpu_core_id >= 0, ( "start_cpu_core_id must be a non-negative integer.") self._start_cpu_core_id = start_cpu_core_id self._place_list = None op_maker = core.op_proto_and_checker_maker self._op_role = op_maker.OpRole self._op_role_key = op_maker.kOpRoleAttrName() self._op_role_var_key = op_maker.kOpRoleVarAttrName() self._op_device_key = op_maker.kOpDeviceAttrName() self._param_device_map = None self._pipeline_pair = [] self._pp_ring_map = dict() self.output_var_to_op = None self.input_var_to_op = None # insert allreduce op to sync global information for global # gradient clip and amp def _insert_allreduce_op(self, op_idx, block): """ Insert allreduce op to sync global information for global gradient clip and amp. """ op = block.ops[op_idx] out_name = op.desc.output_arg_names()[0] out_var = block.var(out_name) offset = 0 if op.type == "reduce_any": # cast the bool var to int32 to use allreduce_max op temp_var_name = unique_name.generate(out_name + "_cast_int32") temp_var = block.create_var( name=temp_var_name, shape=[1], dtype="int32") block._insert_op( op_idx + 1 + offset, type='cast', inputs={'X': out_var}, outputs={'Out': temp_var}, attrs={ 'in_dtype': out_var.dtype, 'out_dtype': temp_var.dtype, self._op_role_key: self._op_role.Optimize }) offset += 1 block._insert_op( op_idx + 1 + offset, type='c_allreduce_max' if op.type == "reduce_any" else 'c_allreduce_sum', inputs={'X': temp_var if op.type == "reduce_any" else out_var}, outputs={'Out': temp_var if op.type == "reduce_any" else out_var}, attrs={ 'ring_id': self.global_ring_id, self._op_role_key: self._op_role.Optimize, 'use_calc_stream': True }) offset += 1 if op.type == "reduce_any": block._insert_op( op_idx + 1 + offset, type='cast', inputs={'X': temp_var}, outputs={'Out': out_var}, attrs={ 'in_dtype': temp_var.dtype, 'out_dtype': out_var.dtype, self._op_role_key: self._op_role.Optimize }) offset += 1 return offset def _create_vars(self, block, ori_block): # Create vars for block, copied from ori_block used_var_set = set() added_op_num = 0 op_idx = 0 op_size = block.desc.op_size() while op_idx < op_size + added_op_num: # Whether to insert allreduce_sum or allreduce_max op. # For amp and global gradient clip strategies, we should # get the global information, so allreduce op is needed. should_insert = False op = block.ops[op_idx] # For op process vars on all devices, remove its input # vars not in this block reserved_x = [] if op.type == 'reduce_any' and self._is_optimize_op(op): should_insert = True elif op.type == 'concat' and self._is_optimize_op(op): for input_name in op.desc.input("X"): if block._find_var_recursive(input_name): reserved_x.append(input_name) op.desc.set_input('X', reserved_x) elif op.type == 'update_loss_scaling': for input_name in op.desc.input("X"): if block._find_var_recursive(input_name): reserved_x.append(input_name) op.desc.set_input('X', reserved_x) op.desc.set_output('Out', reserved_x) elif op.type == 'check_finite_and_unscale': for input_name in op.desc.input("X"): if block._find_var_recursive(input_name): reserved_x.append(input_name) op.desc.set_input('X', reserved_x) op.desc.set_output('Out', reserved_x) if len(reserved_x) == 0: block._remove_op(op_idx) op_size -= 1 continue elif op.type == 'sum' and self._is_gradient_clip_op(op): for input_name in op.desc.input("X"): if block._find_var_recursive(input_name): reserved_x.append(input_name) op.desc.set_input('X', reserved_x) should_insert = True vars = op.desc.input_arg_names() + op.desc.output_arg_names() for var in vars: # a var whose name contains "blocking_queue" # only exists in startup program if var in used_var_set or "_blocking_queue" in var: continue used_var_set.add(var) if block._find_var_recursive(str(var)): continue source_var = ori_block._var_recursive(str(var)) if source_var.type == core.VarDesc.VarType.READER: dest_var = block.create_var( name=var, type=core.VarDesc.VarType.READER, persistable=source_var.persistable) elif isinstance(source_var, Parameter): dest_var = block.create_parameter( name=source_var.name, shape=source_var.shape, dtype=source_var.dtype, type=source_var.type, lod_level=source_var.lod_level, stop_gradient=source_var.stop_gradient, trainable=source_var.trainable, optimize_attr=source_var.optimize_attr, regularizer=source_var.regularizer, error_clip=source_var.error_clip) else: dest_var = block._clone_variable(source_var, False) self._clone_var_attr(dest_var, source_var) # When use with sharding, allreduce_sum and allreduce_max # used for global gradient clip and amp will be added by sharding. op_idx += 1 if self.use_sharding or not should_insert: continue inserted_ops = self._insert_allreduce_op(op_idx - 1, block) added_op_num += inserted_ops op_idx += inserted_ops block._sync_with_cpp() def _is_loss_grad_op(self, op): assert self._op_role_key in op.attr_names op_role = int(op.attr(self._op_role_key)) return op_role & int(self._op_role.Backward) and op_role & int( self._op_role.Loss) def _is_forward_op(self, op): return self._op_role_key in op.attr_names and ( int(op.attr(self._op_role_key)) == int(self._op_role.Forward)) def _is_backward_op(self, op): return self._op_role_key in op.attr_names and ( int(op.attr(self._op_role_key)) & int(self._op_role.Backward)) def _is_loss_op(self, op): assert self._op_role_key in op.attr_names return int(op.attr(self._op_role_key)) == int(self._op_role.Loss) def _is_optimize_op(self, op): return self._op_role_key in op.attr_names and ( int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)) def _is_update_op(self, op): return 'Param' in op.input_names and 'Grad' in op.input_names and ( "LearningRate" in op.input_names) def _split_program(self, main_program, devices): """ Split a program into sections according to devices that ops run on. The op whose op_device attr is "gpu:all" is copied to all sections. Args: main_program (Program): the main program devices: all used devices """ # Map from device to its corresponding section program info device_program_map = defaultdict(Program) block = main_program.block(0) for op in block.ops: device = op.attr(self._op_device_key) # Copy ops whose op_device set to "gpu:all" to all sections. if device == f"{self._device}:all": for device in devices: program = device_program_map[device] op_desc = op.desc ap_op = program.global_block().desc.append_op() ap_op.copy_from(op_desc) ap_op._set_attr(self._op_device_key, "") else: program = device_program_map[device] op_desc = op.desc ap_op = program.global_block().desc.append_op() ap_op.copy_from(op_desc) ap_op._set_attr(self._op_device_key, "") program_list = [] for key in devices: program = device_program_map[key] program._sync_with_cpp() program_list.append(program) return program_list def _get_op_device_for_startup_program(self, var_name): """ For adam optimizer, it will add accumulators and initialize them with fill_constant, and force the op device to cpu. Hence, we should get the real op_device attribute of the fill_constant as the device where the corresponding parameters on. """ assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, \ 'For accumulators for Adam, the name must contain beta1_pow_acc ' \ 'or beta2_pow_acc.' param_name = var_name[0:var_name.index('_beta')] device = self._param_device_map[param_name] return device def _split_startup_program(self, startup_program, device_id): block = startup_program.global_block() new_startup_program = Program() for op in block.ops: device = op.attr(self._op_device_key) if device == "cpu": assert op.type == "fill_constant", ( "For ops in startup program with the op_device attribute " "of cpu, they must be of type fill_constant.") output_var = op.output_arg_names[0] device = self._get_op_device_for_startup_program(output_var) if device: device_index = int(device.split(':')[1]) else: # LR related ops device = None if device and device_index != device_id: continue op_desc = op.desc ap_op = new_startup_program.global_block().desc.append_op() ap_op.copy_from(op_desc) ap_op._set_attr(self._op_device_key, "") new_startup_program._sync_with_cpp() self._create_vars(new_startup_program.global_block(), block) return new_startup_program def _find_post_op(self, index, var_name): """ Find the post op that has variable named var_name as input. """ # bugfix for uniform hybrid parallelism if '.cast_fp32' in var_name: var_name = var_name.replace('.cast_fp32', '') if '.cast_fp16' in var_name: var_name = var_name.replace('.cast_fp16', '') post_ops = self.input_var_to_op[var_name] if post_ops == None: return None result_op = None for post_op, post_idx in reversed(post_ops): if post_idx > index: result_op = post_op break return result_op def _find_prev_op(self, index, var_name): """ Find the previous op of op with index that outputs variable named var_name. """ prev_ops = self.output_var_to_op[var_name] if prev_ops == None: return None result_op = None for prev_op, prev_idx in reversed(prev_ops): if prev_idx < index: result_op = prev_op break return result_op def _rename_arg(self, op, old_name, new_name): op._rename_input(old_name, new_name) op._rename_output(old_name, new_name) def _create_var(self, block, ref_var, name, dtype=None): """ Create a new var for block, which has the same type, shape and dtype as ref_var, then rename it with the name `name`. """ new_var = block.create_var( name=name, shape=ref_var.shape, dtype=ref_var.dtype if dtype is None else dtype, type=ref_var.type, lod_level=ref_var.lod_level, persistable=ref_var.persistable, is_data=ref_var.is_data, need_check_feed=ref_var.desc.need_check_feed()) self._clone_var_attr(new_var, ref_var) return new_var def _clone_var_attr(self, dest, src): dest.stop_gradient = src.stop_gradient if hasattr(src, 'is_distributed'): dest.is_distributed = src.is_distributed def _strip_grad_suffix(self, name): """ Strip the grad suffix from the given variable name """ pos = name.find(core.grad_var_suffix()) return name[:pos] if pos != -1 else name def _append_grad_suffix(self, name): """ Append grad suffix to the given variable name """ return name + core.grad_var_suffix() def _get_op_device_attr(self, op): """ Get the op_device attribute of a op. """ device = op.attr(self._op_device_key) \ if op.has_attr(self._op_device_key) else None if device: assert device[0:3] == 'gpu' or device[0:3] == 'npu', "Now, only gpu and npu devices are " \ "supported in pipeline parallemism." return device def _add_op_device_attr_for_op(self, op, idx, block): """ Add op_device attrribute for ops that have not that attribute set. We use "gpu:all" to represent the op should be put on all sub-programs, such as lr-related ops. Note that: "gpu:all" is only used by pipeline as an indicator. """ lrsched_role = int(self._op_role.LRSched) if op.attr(self._op_role_key) == lrsched_role: # For LRSched ops, we should put them on all sub-programs to # make sure each sub-program update the lr correctly op._set_attr(self._op_device_key, f"{self._device}:all") # bugfix in hybrid parallelism elif op.type == "sum" and self._is_backward_op(op): # For sum ops that compute the sum of @RENAMED@ vars for name in op.desc.input_arg_names(): assert '@RENAME@' in name, \ "The op must be sum used to accumulate renamed vars." assert len(op.desc.output_arg_names()) == 1 out_name = op.desc.output_arg_names()[0] post_op = self._find_post_op(idx, out_name) assert post_op.has_attr( 'op_device'), "{} has no op_device attr for var {}".format( post_op.type, out_name) device = post_op.attr(self._op_device_key) assert device, "The post op must have op_device set." op._set_attr(self._op_device_key, device) elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(op): prev_op = self._find_prev_op(idx, op.desc.input("X")[0]) op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key)) elif op.type == "memcpy" and not self._is_optimize_op(op): # for checkpoint offloading assert len(op.input_arg_names) == 1 and len( op.output_arg_names) == 1 input_name = op.input_arg_names[0] output_name = op.output_arg_names[0] if '@Fetch' in output_name: post_op = self._find_post_op(idx, output_name) op._set_attr(self._op_device_key, post_op.attr(self._op_device_key)) else: prev_op = self._find_prev_op(idx, op.desc.input("X")[0]) op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key)) elif self._is_loss_op(op): # For loss * loss_scaling op added by AMP offset = 1 while (not block.ops[idx + offset].has_attr(self._op_device_key) or not block.ops[idx + offset].attr(self._op_device_key)): offset += 1 device = block.ops[idx + offset].attr(self._op_device_key) assert device, "Please put you program within device_guard scope." for i in range(offset): block.ops[idx + i]._set_attr(self._op_device_key, device) elif self._is_optimize_op(op) and op.type == "cast": # For fp16-->fp32 cast added by AMP grad_name = op.output('Out') assert len(grad_name) == 1 param_name = self._strip_grad_suffix(grad_name[0]) device = self._param_device_map[param_name] op._set_attr(self._op_device_key, device) elif self._is_gradient_clip_op(op) or self._is_regularization_op(op): # For gradient clip and regularization ops, we set their op_device # attribute to the device where their corresponding parameters on. assert self._op_role_var_key in op.attr_names, "gradient_clip " \ "and regularization ops must have op_role_var attribute." op_role_var = op.attr(self._op_role_var_key) assert len(op_role_var) == 2, "op_role_var for gradient_clip " \ "regularization ops must have two elements." param_name = op_role_var[0] device = self._param_device_map[param_name] # For sum op added by global gradient clip, it must be # put on all devices if (op.type == 'sum' or op.type == 'sqrt' or op.type == 'fill_constant' or op.type == 'elementwise_max' or op.type == 'elementwise_div'): device = f"{self._device}:all" op._set_attr(self._op_device_key, device) elif op.type == "alloc_float_status" or op.type == "clear_float_status": op._set_attr(self._op_device_key, f"{self._device}:all") # NOTE(wangxi): NPU should only clear the float status # once at each batch step op._set_attr(self._op_role_key, self._op_role.LRSched) float_status_name = op.output_arg_names[0] float_status_var = block.var(float_status_name) # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0) # while update will exec on sub_scope(last_micro_step), should # set persistable to use global scope float_status_var.persistable = True else: other_known_ops = [ 'update_loss_scaling', 'reduce_any', 'concat', 'sum', 'check_finite_and_unscale', 'memcpy' ] assert op.type in other_known_ops, "For other ops without " \ "op_device set, they must be one of {}, but it " \ "is {}".format(other_known_ops, op.type) assert self._is_optimize_op(op) op._set_attr(self._op_device_key, f"{self._device}:all") def _add_op_device_attr(self, block): """ Add op_device attrribute for ops in block that have not that attribute set. """ for idx, op in enumerate(list(block.ops)): if (op.type == "create_py_reader" or op.type == "read" or op.type == "create_double_buffer_reader"): # Copy read related ops to all section to make them exit # after each epoch. # We use "gpu:all" to represent the op should be put on all # sub-programs, such as lr-related ops. Note that: "gpu:all" # is only used by pipeline as an indicator. op._set_attr(self._op_device_key, f"{self._device}:all") continue # op_device attribute has been set if self._get_op_device_attr(op): continue self._add_op_device_attr_for_op(op, idx, block) def _check_validation(self, block): """ Check whether ops in a block have both the op_device and the op_role attributes set. Then, return all devices in order. """ device_list = [] # Section worker only supports the following op_role valid_op_role_value = [ int(self._op_role.LRSched), int(self._op_role.Forward), int(self._op_role.Backward), int(self._op_role.Loss), int(self._op_role.Optimize), int(self._op_role.Backward) | int(self._op_role.Loss), ] for op in block.ops: if not op._has_kernel(op.type): assert op.type == "conditional_block" and ( op.attr(self._op_role_key) == int(self._op_role.LRSched)), ( "Now, the only supported op without kernel is " "conditional_block, and its op role must be LRSched.") assert op.has_attr(self._op_role_key), ( "op ({}) has no {} attribute.".format(op.type, self._op_role_key)) op_role = op.attr(self._op_role_key) assert int(op_role) in valid_op_role_value, \ "op_role {} for op {} must be one of {}".format( op_role, op.type, valid_op_role_value) assert op.has_attr(self._op_device_key), ( "op ({}) has no {} attribute.".format(op.type, self._op_device_key)) device = op.attr(self._op_device_key) assert device, ("op_device attribute for op " "{} has not been set.".format(op.type)) if device == f"{self._device}:all": continue dev_type = device.split(':')[0] assert dev_type == "gpu" or dev_type == 'npu', ( "Now only gpu and npu devices are supported " "for pipeline parallelism.") if device not in device_list: device_list.append(device) return device_list def _insert_sendrecv_ops_for_boundaries(self, block): """ Insert a pair of send and recv ops for every two consecutive ops on different devices. """ # A map from var to device where op takes it as input, # avoiding multiple send and recv ops. input_var_to_device = dict() # bugfix hybrid parallelism first_optimize_index = None for index, op in enumerate(list(block.ops)): if self._is_optimize_op(op): first_optimize_index = index break extra_index_info = { 'index': 0, 'first_optimize_index': first_optimize_index } for index, op in enumerate(list(block.ops)): cur_device = op.attr(self._op_device_key) if cur_device == f"{self._device}:all": continue for var_name in op.input_arg_names: var = block.var(var_name) # skip data var if var.is_data: continue prev_device = None prev_op = self._find_prev_op(index, var_name) if prev_op is None: if var_name not in self._param_device_map: continue prev_device = self._param_device_map[var_name] if not prev_device: prev_device = prev_op.attr(self._op_device_key) \ if prev_op else None if prev_device is None or prev_device == f"{self._device}:all": continue if prev_device == cur_device: continue if var_name not in input_var_to_device: input_var_to_device[var_name] = [] if (cur_device, prev_device) in input_var_to_device[var_name]: continue device_type = cur_device.split(':')[0] + ':' def _check_stage(cur_id, prev_id): # check send/recv stage valid is_forward = self._is_forward_op(op) is_backward = self._is_backward_op(op) assert is_forward or is_backward, \ 'send/recv in pipeline should only be inserted in forward or backward,' \ 'please check the op_role of op={}'.format(op) if is_forward: assert prev_id < cur_id, \ "In forward, send/recv can only be passed forward, but now " \ "prev_stage={} great than cur_stage={}, please check op_device of op={}".format( prev_id, cur_id, op) elif is_backward: assert prev_id > cur_id, \ "In backward, send/recv can only be passed backward, but now " \ "prev_stage={} less than cur_stage={}, please check op_device of op={}".format( prev_id, cur_id, op) def _insert_send_recv(cur_id, prev_id): cur_dev = device_type + str(cur_id) prev_dev = device_type + str(prev_id) if (cur_dev, prev_dev) in input_var_to_device[var_name]: return if cur_id - prev_id > 1: _insert_send_recv(cur_id - 1, prev_id) _insert_send_recv(cur_id, cur_id - 1) input_var_to_device[var_name].append( (cur_dev, prev_dev)) return elif cur_id - prev_id < -1: _insert_send_recv(cur_id + 1, prev_id) _insert_send_recv(cur_id, cur_id + 1) input_var_to_device[var_name].append( (cur_dev, prev_dev)) return assert abs(cur_id - prev_id) == 1 input_var_to_device[var_name].append((cur_dev, prev_dev)) op_role = op.attr(self._op_role_key) var = block.vars[var_name] pair = (prev_id, cur_id) # 1000 is just a magic number pair_key = prev_id * 1000 + cur_id if pair not in self._pipeline_pair: self._pipeline_pair.append(pair) self._pp_ring_map[pair_key] = self.ring_id ring_id = self.ring_id self.ring_id += 1 else: ring_id = self._pp_ring_map[pair_key] if self.schedule_mode == 'F-then-B': # F-then-B block._insert_op_without_sync( index=index + extra_index_info['index'], type='send_v2', inputs={'X': var}, attrs={ self._op_device_key: prev_dev, self._op_role_key: op_role, 'use_calc_stream': True, 'peer': 1, 'ring_id': ring_id }) extra_index_info['index'] += 1 var_shape = list(var.shape) var_shape[0] = self.micro_batch_size if var_shape[ 0] < 0 else var_shape[0] block._insert_op_without_sync( index=index + extra_index_info['index'], type='recv_v2', outputs={'Out': [var]}, attrs={ 'out_shape': var_shape, 'dtype': var.dtype, self._op_device_key: cur_dev, self._op_role_key: op_role, 'use_calc_stream': True, 'peer': 0, 'ring_id': ring_id }) extra_index_info['index'] += 1 elif self.schedule_mode == '1F1B': # 1F1B var_shape = list(var.shape) var_shape[0] = self.micro_batch_size if var_shape[ 0] < 0 else var_shape[0] numel = np.prod(var_shape) use_mp = (self.mp_degree > 1) and ( numel % self.mp_degree == 0) if 'subprog' in var.name: # For recompute, if the checkpoints var is layer_norm_6.tmp_2 # this var will be sent twice, layer_norm_6.tmp_2 for forward pass, # layer_norm_6.tmp_2.subprog_* for recompute pass. # We can store the first sent var and copy the value to the # second one to reduce one send/recv op. # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used # to find the stored var for the forward pass. origin_name = var.name.split('subprog')[0][0:-1] associate_var = block.var(origin_name) block._insert_op_without_sync( index=index + extra_index_info['index'], type='assign', inputs={'X': [associate_var]}, outputs={'Out': [var]}, attrs={ 'out_shape': var_shape, 'dtype': var.dtype, self._op_device_key: cur_dev, self._op_role_key: op_role, 'use_calc_stream': True, }) extra_index_info['index'] += 1 return _check_stage(cur_id, prev_id) block._insert_op_without_sync( index=index + extra_index_info['index'], type='c_sync_calc_stream', inputs={'X': [var]}, outputs={'Out': [var]}, attrs={ self._op_device_key: prev_dev, self._op_role_key: op_role, }) extra_index_info['index'] += 1 prefix_name = var.name.split('@')[0] prefix_var = block.var(prefix_name) is_param = True if isinstance(prefix_var, Parameter) else False block._insert_op_without_sync( index=index + extra_index_info['index'], type='send_v2' if not use_mp or is_param else 'partial_send', inputs={'X': var}, attrs={ self._op_device_key: prev_dev, self._op_role_key: op_role, 'use_calc_stream': False, 'ring_id': ring_id, 'peer': 1, # if send_v2, num&id attr is not in op_attrs, will not insert 'num': self.mp_degree, 'id': self.mp_rank, }) extra_index_info['index'] += 1 insert_index = None if int(op_role) == int(self._op_role.Backward): insert_index = extra_index_info[ 'first_optimize_index'] new_op_role = self._op_role.Optimize else: insert_index = index new_op_role = self._op_role.Backward sync_comm_op = block._insert_op_without_sync( index=insert_index + extra_index_info['index'], type='c_sync_comm_stream', inputs={'X': [var]}, outputs={'Out': [var]}, attrs={ self._op_device_key: prev_dev, self._op_role_key: new_op_role, 'ring_id': ring_id, }) if int(op_role) == int(self._op_role.Forward): sync_comm_op._set_attr('pipeline_flag', '') extra_index_info['index'] += 1 block._insert_op_without_sync( index=index + extra_index_info['index'], type='recv_v2' if not use_mp or is_param else 'partial_recv', outputs={'Out': [var]}, attrs={ 'out_shape': var_shape, 'dtype': var.dtype, self._op_device_key: cur_dev, self._op_role_key: op_role, 'use_calc_stream': True, 'peer': 0, 'ring_id': ring_id, # if recv_v2, num&id attr is not in op_attrs, will not insert 'num': self.mp_degree, 'id': self.mp_rank, }) extra_index_info['index'] += 1 if use_mp and not is_param: block._insert_op_without_sync( index=index + extra_index_info['index'], type='partial_allgather', inputs={'X': [var]}, outputs={'Out': [var]}, attrs={ self._op_device_key: cur_dev, self._op_role_key: op_role, 'use_calc_stream': True, 'ring_id': 0, # if recv_v2, num&id attr is not in op_attrs, will not insert 'nranks': self.mp_degree, 'rank': self.mp_rank, }) extra_index_info['index'] += 1 else: raise ValueError( "Now only 'F-then-B' and '1F1B' are supported." "The given value is {}.".format(self.schedule_mode)) _insert_send_recv( int(cur_device.split(':')[1]), int(prev_device.split(':')[1])) block._sync_with_cpp() def _insert_loss_scale(self, block): """ Scale the loss corresponding to number of micro-batches. """ if self._num_microbatches == 1: return for index, op in reversed(tuple(enumerate(list(block.ops)))): if self._is_loss_grad_op(op): assert op.type == 'fill_constant', \ "loss_grad_op must be fill_constant op, " \ "but this op is {}".format(op.type) assert op.has_attr('value') loss_scale = float(op.attr('value')) loss_scale = loss_scale / self._num_microbatches op._set_attr('value', loss_scale) break def _rename_gradient_var_name(self, block): for index, op in enumerate(block.ops): if not self._is_optimize_op(op): continue input_names = op.input_arg_names output_names = op.output_arg_names in_out_names = input_names + output_names if op.type == 'cast' or op.type == "c_sync_comm_stream": continue # append "MERGED" to the names of parameter gradients, # and mofify the op_role_var attribute (by rename_arg func). for name in in_out_names: if not core.grad_var_suffix() in name: continue param_name = name.strip(core.grad_var_suffix()) new_grad_name = name + "@MERGED" self._rename_arg(op, name, new_grad_name) def _accumulate_gradients(self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None): """ Create a new merged gradient for each parameter and accumulate the corresponding gradient to it. """ fp16_allreduce = strategy.fp16_allreduce if strategy else False if strategy and strategy.fuse_grad_merge: fused_gradient_names = self._accumulate_gradients_with_fuse( block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard) return fused_gradient_names merged_gradient_names = [] first_opt_op_idx = None merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED' dtype = paddle.float16 if fp16_allreduce else None for index, op in reversed(tuple(enumerate(list(block.ops)))): # remove the cast op of fp16 grad to fp32 grad if self._is_optimize_op(op) and op.type == 'cast': in_name = op.input_arg_names[0] out_name = op.output_arg_names[0] if out_name.strip('@GRAD') in self._param_device_map: assert in_name.replace('.cast_fp16', '') == out_name block._remove_op(index) continue if self._is_backward_op(op) and first_opt_op_idx is None: first_opt_op_idx = index + 1 # maybe have no optimize # if first_opt_op_idx == len(block.ops): return if self._is_backward_op(op) and ( self._op_role_var_key in op.attr_names): op_role_var = op.attr(self._op_role_var_key) if len(op_role_var) == 0: continue assert len(op_role_var) % 2 == 0 for i in range(0, len(op_role_var), 2): offset = 0 param_name = op_role_var[i] if not block.has_var(param_name): continue if '@BroadCast' in param_name: continue param_grad_name = param_name + core.grad_var_suffix() merged_param_grad_name = param_grad_name + merged_suffix if not block.has_var(merged_param_grad_name): self._create_var(block, block.vars[param_name], merged_param_grad_name, dtype) assert block.has_var(merged_param_grad_name) param_grad_var = block.var(param_grad_name) merged_param_grad_var = block.var(merged_param_grad_name) merged_param_grad_var.persistable = True block._insert_op( index=first_opt_op_idx + offset, type='fill_constant', inputs={}, outputs={'Out': [merged_param_grad_var]}, attrs={ 'shape': merged_param_grad_var.shape, 'dtype': merged_param_grad_var.dtype, 'value': float(0), # a trick to run this op once per mini-batch self._op_role_key: self._op_role.Optimize.LRSched, }) offset += 1 grad_name = op_role_var[i + 1] grad_var = block.vars[grad_name] is_fp16_grad = 'cast_fp16' in grad_name need_cast = (is_fp16_grad is not fp16_allreduce) if need_cast: # if fp16_allreduce: # cast grad to fp16 to accumulate to merged gradient # else: # cast grad to fp32 to accumulate to merged gradient cast_grad_var_name = param_grad_name + '@TMP' cast_grad_var = self._create_var( block, param_grad_var, cast_grad_var_name, dtype) cast_grad_var.persistable = False block._insert_op( index=first_opt_op_idx + offset, type='cast', inputs={'X': grad_var}, outputs={'Out': cast_grad_var}, attrs={ 'in_dtype': grad_var.dtype, 'out_dtype': cast_grad_var.dtype, self._op_role_key: self._op_role.Backward, }) offset += 1 grad_var = cast_grad_var block._insert_op( index=first_opt_op_idx + offset, type='sum', inputs={'X': [merged_param_grad_var, grad_var]}, outputs={'Out': merged_param_grad_var}, attrs={self._op_role_key: self._op_role.Backward, }) offset += 1 merged_gradient_names.append(merged_param_grad_name) if not fp16_allreduce: return merged_gradient_names first_opt_op_idx = None for index, op in reversed(tuple(enumerate(list(block.ops)))): if self._is_backward_op(op) and first_opt_op_idx is None: first_opt_op_idx = index + 1 break assert first_opt_op_idx is not None # insert cast op from fp16->fp32 # FIXME(wangxi): maybe put in sharding is better, for some grad # is not in sharding device. for fp16_grad_name in merged_gradient_names: grad_name = fp16_grad_name.replace('@FP16', '') param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '') if not block.has_var(grad_name): self._create_var(block, block.vars[param_name], grad_name) assert block.has_var(grad_name) fp16_grad_var = block.var(fp16_grad_name) grad_var = block.var(grad_name) grad_var.persistable = False block._insert_op( index=first_opt_op_idx, type='cast', inputs={'X': fp16_grad_var}, outputs={'Out': grad_var}, attrs={ 'in_dtype': fp16_grad_var.dtype, 'out_dtype': grad_var.dtype, self._op_role_key: self._op_role.Optimize, }) return merged_gradient_names def _insert_accumulate_gradients_with_fuse(self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx): grad_param_pairs = self._sort_grad_param_by_dtype(main_block, grad_param_pairs) grad_param_segments = [] merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED' dtype = paddle.float16 if fp16 else paddle.float32 cur_size = 0. last_dtype = None # split the grad based on dtype and fused size for grad, param in grad_param_pairs: real_grad = main_block.var(grad) # create the gradient merged var for each grad merged_grad_var = main_block.create_var( name=param + core.grad_var_suffix() + merged_suffix, dtype=dtype, shape=real_grad.shape, persistable=True, stop_gradient=False) real_param = main_block.var(param) if hasattr(real_param, 'is_distributed'): merged_grad_var.is_distributed = real_param.is_distributed tmp_size = self._get_var_size(real_grad) # two strategies for splitting the grad # 1. the current segment's size reach the user defined grad_size_in_MB # 2. the upcoming grad holds different dtype compared with grads in current segment if len(grad_param_segments) == 0 \ or cur_size + tmp_size > fused_size \ or real_grad.dtype != last_dtype: grad_param_segments.append( ([real_grad], [real_param], [merged_grad_var])) last_dtype = real_grad.dtype cur_size = 0. else: grad_param_segments[-1][0].append(real_grad) grad_param_segments[-1][1].append(real_param) grad_param_segments[-1][2].append(merged_grad_var) cur_size += tmp_size fused_gradients = [] fused_merged_gradients = [] # create fused vars for grad and param for grad_param_segment in grad_param_segments: grad_segment = grad_param_segment[0] merged_grad_segment = grad_param_segment[2] fused_grad = main_block.create_var( name='FusedGrad_{}'.format(grad_segment[0].name), dtype=grad_segment[0].dtype, persistable=False, stop_gradient=False) # keep the '.cast_fp16' info in the fuse var name fused_merged_grad_name_prefix = 'FusedMergedGrad.cast_fp16.' if \ merged_grad_segment[0].dtype == paddle.float16 else 'FusedMergedGrad' fused_merged_grad_name = fused_merged_grad_name_prefix + '_{}'.format( merged_grad_segment[0].name) fused_merged_grad = main_block.create_var( name=fused_merged_grad_name, dtype=merged_grad_segment[0].dtype, persistable=True, stop_gradient=False) fused_gradients.append(fused_grad) fused_merged_gradients.append(fused_merged_grad) assert len(fused_gradients) == len(grad_param_segments) assert len(fused_merged_gradients) == len(grad_param_segments) # insert coalesce op at the start of the backward pass # use param as the coalesce input to make sure the two Fused vars are in same shape first_back_op_idx = None for index, op in enumerate(main_block.ops): if self._is_backward_op(op) and first_back_op_idx is None: first_back_op_idx = index break assert first_back_op_idx is not None offset = 0 for i in range(len(grad_param_segments)): fused_grad = fused_gradients[i] fused_merged_grad = fused_merged_gradients[i] grads = grad_param_segments[i][0] params = grad_param_segments[i][1] merged_grads = grad_param_segments[i][2] main_block._insert_op_without_sync( first_back_op_idx + offset, type="coalesce_tensor", inputs={"Input": params}, outputs={"Output": grads, "FusedOutput": fused_grad}, attrs={ # Explanation of user_defined_size_of_dtype: # In coalesce op, the align size is 256 bytes # the float takes 4 bytes while fp16 takes 2 bytes. # To meet the requirement, 128 fp16 or 64 float will be aligned # Think the total shape of the input tensors if [64], # if the dtype is float, then the shape of the fuse var is [64] # however if the dytpe if fp16, the shape of the fuse var is [128], # which will cause the fused vars' shape vary between each other. # To make sure the shape of the fused vars are identical, # we set the dtype of float and fp16 both to 2. # Under this way, the fused vars' shape for float and fp16 are all [128] "user_defined_size_of_dtype": 2, "copy_data": False, "use_align": True, "dtype": grads[0].dtype, self._op_role_key: self._op_role.Backward, # On npu, the nan/inf check login is different with gpu. # If there are some not initialized sections in the fused var, # and the value in those sections are nan/inf, it will trigger the nan/inf check. # To avoid these problematic triggers, set constant is needed for npu "set_constant": core.is_compiled_with_npu(), "constant": float(0.0), }) offset += 1 # For the gradient_merged_fused_var, given a init value during the coalesce op # this will remove a problematic fill_constant op. This op role of this coalesce # is set to be LRSched to make this coalesce (with init) only run once main_block._insert_op_without_sync( first_back_op_idx + offset, type="coalesce_tensor", inputs={"Input": params}, outputs={ "Output": merged_grads, "FusedOutput": fused_merged_grad }, attrs={ "user_defined_size_of_dtype": 2, "set_constant": True, "constant": float(0.0), "copy_data": False, "use_align": True, "dtype": merged_grads[0].dtype, self._op_role_key: self._op_role.Optimize.LRSched }) offset += 1 # insert gradient merge relating ops first_opt_op_idx += offset offset = 0 for i in range(len(fused_gradients)): fused_grad = fused_gradients[i] fused_merged_grad = fused_merged_gradients[i] is_fp16_grad = 'cast_fp16' in fused_grad.name need_cast = (is_fp16_grad is not fp16) if need_cast: # for fp16 allreduce, cast fp32 grad to fp16 # for fp32 allreduce, cast fp16 grad to fp32 cast_grad_var_name = fused_grad.name + '@TMP' cast_grad_var = main_block.create_var( name=cast_grad_var_name, dtype=dtype, persistable=False, stop_gradient=False) main_block._insert_op( index=first_opt_op_idx + offset, type='cast', inputs={'X': fused_grad}, outputs={'Out': cast_grad_var}, attrs={ 'in_dtype': fused_grad.dtype, 'out_dtype': cast_grad_var.dtype, self._op_role_key: self._op_role.Backward, }) offset += 1 fused_grad = cast_grad_var main_block._insert_op( index=first_opt_op_idx + offset, type='sum', inputs={'X': [fused_merged_grad, fused_grad]}, outputs={'Out': fused_merged_grad}, attrs={self._op_role_key: self._op_role.Backward}) offset += 1 if fp16: # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32 for grad, param in grad_param_pairs: real_grad = main_block.var(grad) fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16' assert main_block.has_var(fp16_grad_name) fp16_grad = main_block.var(fp16_grad_name) fp32_grad_name = param + core.grad_var_suffix() + '@MERGED' fp32_grad = main_block.create_var( name=fp32_grad_name, dtype=paddle.float32, shape=real_grad.shape, persistable=False, stop_gradient=False) main_block._insert_op( index=first_opt_op_idx + offset, type='cast', inputs={'X': fp16_grad}, outputs={'Out': fp32_grad}, attrs={ 'in_dtype': paddle.float16, 'out_dtype': paddle.float32, self._op_role_key: self._op_role.Optimize, }) offset += 1 # replace the var with it's name, which will be used for inserting allreduce for i in range(len(fused_merged_gradients)): fused_merged_gradients[i] = fused_merged_gradients[i].name return fused_merged_gradients, first_opt_op_idx def _accumulate_gradients_with_fuse(self, main_block, fp16, fused_size, shard=None): first_opt_op_idx = None grad_param_pairs = [] # obtain all param/grad pairs that needed to be fused for index, op in reversed(tuple(enumerate(list(main_block.ops)))): # remove the cast op of fp16 grad to fp32 grad if self._is_optimize_op(op) and op.type == 'cast': in_name = op.input_arg_names[0] out_name = op.output_arg_names[0] if out_name.strip('@GRAD') in self._param_device_map: assert in_name.replace('.cast_fp16', '') == out_name main_block._remove_op(index) continue if self._is_backward_op(op) and first_opt_op_idx is None: first_opt_op_idx = index + 1 # no optimize phase if first_opt_op_idx == len(main_block.ops): return if self._is_backward_op(op) and ( self._op_role_var_key in op.attr_names): op_role_var = op.attr(self._op_role_var_key) if len(op_role_var) == 0: continue assert len(op_role_var) % 2 == 0 for i in range(0, len(op_role_var), 2): param_name = op_role_var[i] if not main_block.has_var(param_name): continue if '@BroadCast' in param_name: continue grad_param_pairs.append( (op_role_var[i + 1], op_role_var[i])) if len(grad_param_pairs) == 0: return nranks = shard.worker_num if shard else 1 device_to_pairs = [[] for _ in range(nranks)] for pair in grad_param_pairs: root_id = shard.device(pair[1]) if shard else 0 assert 0 <= root_id < nranks device_to_pairs[root_id].append(pair) all_fused_merged_gradients = [] for pairs in device_to_pairs: fused_merged_gradients, first_opt_op_idx = \ self._insert_accumulate_gradients_with_fuse( main_block, fp16, fused_size, pairs, first_opt_op_idx) all_fused_merged_gradients += fused_merged_gradients main_block._sync_with_cpp() return all_fused_merged_gradients def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs): # sort the grad param paris by the dtype fp16_pairs = [] fp32_pairs = [] other_pairs = [] for pairs in grad_param_pairs: dtype = main_block.var(pairs[0]).dtype if dtype == paddle.float32: fp32_pairs.append(pairs) elif dtype == paddle.float16: fp16_pairs.append(pairs) else: other_pairs.append(pairs) sorted_pairs = fp16_pairs sorted_pairs.extend(fp32_pairs) sorted_pairs.extend(other_pairs) return sorted_pairs def _get_var_size(self, var): dtype_to_size = { core.VarDesc.VarType.FP16: 2, core.VarDesc.VarType.FP32: 4, core.VarDesc.VarType.FP64: 8, core.VarDesc.VarType.INT16: 2, core.VarDesc.VarType.INT32: 4, core.VarDesc.VarType.INT64: 8, core.VarDesc.VarType.BOOL: 1, core.VarDesc.VarType.UINT8: 1, } assert -1 not in var.shape return reduce(lambda x, y: x * y, var.shape) * dtype_to_size[var.dtype] / 1024.0 / 1024.0 def _add_sub_blocks(self, main_block, program_list): main_program = main_block.program for prog in program_list: for op in prog.block(0).ops: if not op.has_attr('sub_block'): continue origin_sub_block_id = op.attr('sub_block').id origin_sub_block = main_program.block(origin_sub_block_id) new_sub_block = prog._create_block(parent_idx=0) for sub_op in origin_sub_block.ops: op_desc = sub_op.desc ap_op = new_sub_block.desc.append_op() ap_op.copy_from(op_desc) new_sub_block._sync_with_cpp() self._create_vars(new_sub_block, origin_sub_block) op._set_attr('sub_block', new_sub_block) def _get_device_info(self, block): for op in block.ops: if not op._has_kernel(op.type): continue op_device = op.attr(self._op_device_key) return op_device def _process_persistable_vars_in_multi_sections(self, main_program, startup_prog, program_list): """ Special Case: process persistable vars that exist in multiple sections, e.g., shared weight """ # var_info = {var_name: [program1, program2...]}, # persistable var only var_info = dict() for prog in program_list: block = prog.block(0) for var_name in block.vars: if var_name == "double_buffer_0": continue var = block.var(var_name) if not var.persistable: continue if not var_name in var_info: var_info[var_name] = [] if not prog in var_info[var_name]: var_info[var_name].append(prog) for var_name in list(var_info.keys()): if len(var_info[var_name]) == 1: var_info.pop(var_name) # write_info = {var_name: program}, where program is the only program # in which the var named var_name is written. write_info = dict() for var_name in var_info.keys(): for prog in var_info[var_name]: block = prog.block(0) for op in block.ops: if op.type == "recv_v2" or op.type == "create_py_reader" or \ op.type == "read" or op.type == "update_loss_scaling": continue # We have processed lr related vars if op.attr(self._op_role_key) == int( self._op_role.Optimize.LRSched): continue if var_name in op.desc.output_arg_names(): assert var_name not in write_info, ( "two sections write the same var({}): second " "op {}.".format(var_name, op)) write_info[var_name] = prog break for var_name in var_info.keys(): # Case 1: read only variables, no special process if not var_name in write_info: continue # Case 2: one write multiple reads write_prog = write_info[var_name] write_block = write_prog.block(0) write_device = self._get_device_info(write_block) write_dev_index = int(write_device.split(':')[1]) all_progs = var_info[var_name] for prog in all_progs: if prog == write_prog: continue read_block = prog.block(0) read_device = self._get_device_info(read_block) read_dev_index = int(read_device.split(':')[1]) pair = (write_dev_index, read_dev_index) pair_key = write_dev_index * 1000 + read_dev_index if pair not in self._pipeline_pair: self._pipeline_pair.append(pair) self._pp_ring_map[pair_key] = self.ring_id ring_id = self.ring_id self.ring_id += 1 else: ring_id = self._pp_ring_map[pair_key] write_block._insert_op( index=0, type='send_v2', inputs={'X': write_block.var(var_name), }, attrs={ self._op_device_key: write_device, 'use_calc_stream': False, # A trick to make the role LRSched to avoid copy every # microbatch self._op_role_key: self._op_role.LRSched, 'peer': read_dev_index, 'ring_id': ring_id }) read_block._insert_op( index=0, type='recv_v2', outputs={'Out': [read_block.var(var_name)]}, attrs={ 'out_shape': read_block.var(var_name).shape, 'dtype': read_block.var(var_name).dtype, self._op_device_key: read_device, 'use_calc_stream': False, # A trick to make the role LRSched to avoid copy every # microbatch self._op_role_key: self._op_role.LRSched, 'peer': write_dev_index, 'ring_id': ring_id }) read_block._insert_op( index=1, type='c_sync_comm_stream', inputs={'X': [read_block.var(var_name)]}, outputs={'Out': [read_block.var(var_name)]}, attrs={ self._op_device_key: read_device, # A trick to make the role LRSched to avoid copy every # microbatch self._op_role_key: self._op_role.LRSched, 'ring_id': ring_id }) def _is_gradient_clip_op(self, op): return op.desc.has_attr("op_namescope") \ and op.desc.attr("op_namescope").startswith("/gradient_clip") def _is_regularization_op(self, op): return op.desc.has_attr("op_namescope") \ and op.desc.attr("op_namescope").startswith("/regularization") def _is_weight_decay_op(self, op): # in AdamW namescope is /optimizer_*/weight decay/ return op.desc.has_attr("op_namescope") \ and 'weight decay' in op.desc.attr("op_namescope") def _get_input_output_info(self, block): ''' Get info of op input and output. ''' # A map from output var to op which generate it. output_var_to_op = defaultdict(list) # A map from var to op which takes it as input. input_var_to_op = defaultdict(list) for index, op in enumerate(block.ops): for var_name in op.input_arg_names: input_var_to_op[var_name].append([op, index]) for var_name in op.output_arg_names: output_var_to_op[var_name].append([op, index]) return output_var_to_op, input_var_to_op def _optimize_forward_send_sync(self, program): """ optimize forward send's sync_comm_stream schedule """ if self.schedule_mode != '1F1B': return block = program.block(0) recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv' backward_recv_index = None for index, op in enumerate(block.ops): if op.type == recv_type and self._is_backward_op(op): backward_recv_index = index break # last pipeline stage if backward_recv_index is None: return offset = 0 for index, op in enumerate(list(block.ops)): if index >= backward_recv_index: break if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'): var_name = op.input_arg_names[0] var = block.var(var_name) block._remove_op(index + offset, sync=False) offset -= 1 # NOTE: # 1. When the backward recv is completed, it indicates # that the forward send is completed too. So we only need # to use the NOP op to prevent memory release. # 2. Because we removed sync_comm_op, # we will insert NOP after recv_op. block._insert_op_without_sync( index=backward_recv_index, type='nop', inputs={'X': [var]}, outputs={'Out': [var]}, attrs={self._op_role_key: self._op_role.Backward}) block._sync_with_cpp() def _mv_head_recv(self, program): """ A pass to move the recv op to the beginning of the forward/backward phase """ forward_insert_index = 0 backward_insert_index = None block = program.global_block() num_ops = len(program.global_block().ops) for i in range(num_ops): insert_index = None op = program.global_block().ops[i] op_role = int(op.attr(self._op_role_key)) if op_role == int( self._op_role.Backward) and backward_insert_index is None: backward_insert_index = i if op.type != "partial_recv" and op.type != "partial_allgather" and op.type != "nop" and op.type != "recv_v2": continue if op_role == int(self._op_role.Forward): if i == forward_insert_index: forward_insert_index += 1 continue insert_index = forward_insert_index elif op_role == int(self._op_role.Backward): if i == backward_insert_index: backward_insert_index += 1 continue insert_index = backward_insert_index else: raise ValueError("Unknown op_role: {}".format(op_role)) op_inputs = dict() for name in op.input_names: op_inputs[name] = op.input(name) op_outputs = dict() for name in op.output_names: op_outputs[name] = op.output(name) block._insert_op_without_sync( index=insert_index, type=op.type, inputs=op_inputs, outputs=op_outputs, attrs=op.all_attrs()) block._remove_op(i + 1) if op_role == int(self._op_role.Forward): forward_insert_index += 1 elif op_role == int(self._op_role.Backward): backward_insert_index += 1 block._sync_with_cpp() def _check_pipeline_persist_var(self, program): """ Pipeline may need multiple forward before """ block = program.global_block() persist_output = set() used_in_backward = set() for op in block.ops: if self._is_forward_op(op): for var_name in op.output_arg_names: var = block.vars[var_name] if var.persistable: persist_output.add(var_name) elif self._is_backward_op(op): for var_name in op.input_arg_names: if var_name in persist_output: used_in_backward.add(var_name) if len(used_in_backward) == 0: return warnings.warn( "The pipeline requires multiple forward calculations before backward, " "so when the persistable var is changed in the forward, it may cause " "errors in the backward calculation who using this persistable var. " "However, some backward op don't need this var(NoNeedBufferVars), " "there will be no error at this time.\n" "So please check these persistable vars which changed in " "forward and used in backward:\n{}".format(used_in_backward)) def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): main_block = loss.block self.origin_main_block = main_block main_program = main_block.program if startup_program is None: startup_program = default_startup_program() pipeline_opt = main_program._pipeline_opt assert pipeline_opt, 'Please use pipeline with fleet.' required_keys = [ 'local_rank', 'schedule_mode', 'micro_batch_size', 'ring_id', 'global_ring_id', 'use_sharding', 'mp_degree', 'mp_rank', ] for key in required_keys: assert key in pipeline_opt, \ 'Please use pipeline with fleet to use {}.'.format(key) self.local_rank = pipeline_opt['local_rank'] self.schedule_mode = pipeline_opt['schedule_mode'] self.micro_batch_size = pipeline_opt['micro_batch_size'] self.use_sharding = pipeline_opt['use_sharding'] self.ring_id = pipeline_opt['ring_id'] self.global_ring_id = pipeline_opt['global_ring_id'] self.mp_degree = pipeline_opt['mp_degree'] self.mp_rank = pipeline_opt['mp_rank'] self.scale_gradient = pipeline_opt.get('scale_gradient', False) assert self.mp_degree >= 1 assert 0 <= self.mp_rank < self.mp_degree optimize_ops, params_grads = self._optimizer.minimize( loss, startup_program, parameter_list, no_grad_set) self._param_device_map = self._origin_optimizer._param_device_map self.output_var_to_op, self.input_var_to_op = \ self._get_input_output_info(main_block) # Step1: add default op_device attribute for ops. self._add_op_device_attr(main_block) device_list = self._check_validation(main_block) def device_cmp(device1, device2): dev1_id = int(device1.split(':')[1]) dev2_id = int(device2.split(':')[1]) if dev1_id < dev2_id: return -1 elif dev1_id > dev2_id: return 1 else: return 0 sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp)) assert sorted_device_list == device_list, ( "With pipeline parallelism, you must use gpu devices one after " "another in the order of their ids.") # Step2: add send and recv ops between section boundaries self._insert_sendrecv_ops_for_boundaries(main_block) # Step3: split program into sections and add pairs of # send and recv ops for data var. main_program = main_block.program program_list = self._split_program(main_program, device_list) for p in program_list: self._create_vars(p.global_block(), main_block) if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None): self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE")) assert self.local_rank < len(device_list), ( "Manually specified " "pipeline stage must be less than total number of pipeline " "stages.") else: self.local_rank %= len(device_list) # Step3.5: optimize forward send sync_comm to overlap send and recv self._optimize_forward_send_sync(program_list[self.local_rank]) # Step4: Special Case: process persistable vars that exist in # multiple sections # FIXME # self._process_persistable_vars_in_multi_sections( # main_program, startup_program, program_list) # Step5: Add sub blocks for section programs self._add_sub_blocks(main_block, program_list) place_list = [] for dev in device_list: dev_index = int(dev.split(":")[1]) if core.is_compiled_with_cuda(): place_list.append(core.CUDAPlace(dev_index % 1)) elif core.is_compiled_with_npu(): place_list.append(core.NPUPlace(dev_index % 1)) # Step6: Split startup program new_startup_program = self._split_startup_program(startup_program, self.local_rank) startup_program._pipeline_opt = { "startup_program": new_startup_program, } real_block = program_list[self.local_rank].global_block() if not self.scale_gradient: self._insert_loss_scale(real_block) if not self.use_sharding: # Step7: clear gradients before each mini-batch and # accumulate gradients during backward self._rename_gradient_var_name(real_block) real_block._sync_with_cpp() self._accumulate_gradients(real_block) real_block._sync_with_cpp() if core.is_compiled_with_cuda(): place_id = int(os.getenv("FLAGS_selected_gpus", "0")) elif core.is_compiled_with_npu(): place_id = int(os.getenv("FLAGS_selected_npus", "0")) # A pass to move the recv op to the beginning of # the forward/backward phase self._mv_head_recv(program_list[self.local_rank]) # A pass to check pipeline persist var which changed in # forward and used in backward self._check_pipeline_persist_var(program_list[self.local_rank]) main_program._pipeline_opt = { "trainer": "PipelineTrainer", "device_worker": "Section", "pipeline_stage": self.local_rank, "num_pipeline_stages": len(device_list), "schedule_mode": self.schedule_mode, "inner_parallelism": len(device_list), "section_program": program_list[self.local_rank], "place": place_list[self.local_rank], "place_id": place_id, "sync_steps": -1, "num_microbatches": self._num_microbatches, "start_cpu_core_id": self._start_cpu_core_id, } return optimize_ops, params_grads, program_list, self._pipeline_pair, self._pp_ring_map class RecomputeOptimizer(Optimizer): """ :api_attr: Static Graph Recompute Optimizer Wrapper Normally, a training step contains three sub-steps: first, run forward Operators to calculate the loss; second, run backward Operators to calculate gradient of the parameters; third, apply optimization method to update the value of the parameters. In the forward computation process, all variables that are needed by backward computation process will be kept in memory, which occupy a great amount of memory when the network becomes very deep. Recompute split the network to k segments. In each segment, It will recompute the forward Operators, before running backward operators. It is very helpful for saving memory. The Variables that separate a network to segments are called as checkpoints, and users should set it manually. The usage is very simple: Args: optimizer (Optimizer): The optimizer that is applied to parameters. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return {"x": np.random.random(size=(32, 32)).astype('float32'), "y": np.random.randint(2, size=(32, 1)).astype('int64')} def mlp(input_x, input_y, hid_dim=128, label_dim=2): print(input_x) fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([fc_1, pred]) sgd.minimize(cost) print("Finished optimize") place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) step = 10 for i in range(step): cost_val = exe.run(feed=gen_data(), program=fluid.default_main_program(), fetch_list=[cost.name]) print("step=%d cost=%f" % (i, cost_val[0])) """ def __init__(self, optimizer): if framework._non_static_mode(): raise Exception("In dygraph, don't support RecomputeOptimizer.") self._optimizer = optimizer self._checkpoints = None self._learning_rate = self._optimizer._learning_rate self._learning_rate_map = self._optimizer._learning_rate_map self.enable_offload = False def _set_checkpoints(self, checkpoints): """ Args: checkpoints (list): List of Variable or string """ assert isinstance( checkpoints, list ), "_checkpoints should be a list of Variable or a list of String" for ckpt in checkpoints: assert ( isinstance(ckpt, six.string_types) or isinstance(ckpt, Variable) ), "_checkpoints should be a list of Variable or a list of String" self._checkpoints = checkpoints # should enable offload before calling backward def _enable_offload(self): self.enable_offload = True @framework.deprecate_stat_dict def load(self, state_dict): """ :api_attr: Static Graph load function is not supported by Recompute Optimizer for now. :return: None Args: state_dict: the dict load by load_persistable method Examples: .. code-block:: python import paddle.fluid as fluid import paddle.compat as cpt def mlp(input_x, input_y, hid_dim=128, label_dim=2): fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) print("Finished FF") sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([fc_1, pred]) try: state_dict = {} sgd.load(state_dict) except NotImplementedError as e: print(cpt.get_exception_message(e)) """ raise NotImplementedError( "load function is not supported by Recompute Optimizer for now") def apply_gradients(self, params_grads): """ call apply_gradients function of self._optimizer. Args: params_grads (list): list of (param, grad) pair to do optimization. Returns: list: A list of operators appended to the current program. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.framework as framework def mlp(input_x, input_y, hid_dim=128, label_dim=2): fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) print("Finished FF") sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([fc_1, pred]) params_grads = sgd.backward( cost, startup_program=None, parameter_list=None, no_grad_set=None) program = cost.block.program with framework.program_guard(program, None): optimize_ops = sgd.apply_gradients(params_grads) print("Finished apply gradients") """ return self._optimizer.apply_gradients(params_grads=params_grads) def _creat_vars(self, varname): pinned_var_name = unique_name.generate(varname + "@Pinned") fetched_var_name = unique_name.generate(varname + "@Fetch") pinned_var = self._main_program.global_block().create_var( name=pinned_var_name, shape=self.checkpoint_shape, dtype=self._main_program.global_block().var(varname).dtype, persistable=False, stop_gradient=True) fetch_var = self._main_program.global_block().create_var( name=fetched_var_name, shape=self.checkpoint_shape, dtype=self._main_program.global_block().var(varname).dtype, persistable=False, stop_gradient=False) return pinned_var_name, fetched_var_name def _append_fill_constant_ops(self, startup_program): """ add fill_constant_ops to the end of the prog we should fill the pinned vars before runing the main_prog to instantiate their tensor hold_, which could tell us whether the host memory could hold all the checkpoints from all the GPU devices in this node. """ op_role = 0 block = startup_program.global_block() fill_constant_vars = self.checkpoint_name2pinned_name.values() OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName() for varname in fill_constant_vars: var = self._main_program.global_block().var(varname) # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM pinned_var = block.create_var( name=varname, shape=self.checkpoint_shape, dtype=self._main_program.global_block().var(var.name).dtype, persistable=False, stop_gradient=True) block.append_op( type='fill_constant', outputs={'Out': varname}, attrs={ "shape": var.shape, "dtype": var.dtype, "value": 0.0, "place_type": 2, OP_ROLE_KEY: op_role, }) return def _insert_async_memcpy_op(self, insert_idx, src_varname, dst_varname, op_role, dst_place_type): OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName() self.block._insert_op_without_sync( insert_idx, type='memcpy', inputs={'X': [self._main_program.global_block().var(src_varname)]}, outputs={ 'Out': [self._main_program.global_block().var(dst_varname)] }, attrs={ "dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role }) def _insert_fetch_op(self, idx, varname): assert varname in self.checkpoint_name2pinned_name, "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format( varname) pinned_varname = self.checkpoint_name2pinned_name[varname] fetch_varname = self.checkpoint_name2fetch_name[varname] self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1) def _insert_offload_op(self, idx, varname): assert varname in self.checkpoint_name2pinned_name, "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format( varname) pinned_varname = self.checkpoint_name2pinned_name[varname] self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2) def _insert_sync_op(self, op_idx, checkpoint_name): # single stream offload no need sync pass def _record_fetch_op(self, idx): assert len(self.un_fetch_checkpoint_names ) > 0, "Could NOT found checkpoint to fetch" checkpoint_name = self.un_fetch_checkpoint_names.pop(-1) logging.debug("Record fetch [{}]".format(checkpoint_name)) self.idx2insertions[idx] = ("fetch", checkpoint_name) return checkpoint_name def _record_offload_op(self, idx, checkpoint_name): expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0) assert checkpoint_name == expected_checkpoint_name, "expected to offload [{}] but got [{}]".format( expected_checkpoint_name, checkpoint_name) logging.debug("Record offload [{}]".format(checkpoint_name)) self.idx2insertions[idx] = ("offload", checkpoint_name) def _record_sync_op(self, idx, checkpoint_name): assert checkpoint_name not in self.synced_checkpoints, "Try to sync the checkpoint [{}] twice".format( checkpoint_name) self.synced_checkpoints.add(checkpoint_name) logging.debug("Record offload sync [{}]".format(checkpoint_name)) self.idx2insertions[idx] = ("sync", checkpoint_name) def _parse_backward(self): self.idx2insertions = {} # don't offload the last checkpoints, to favor throughput self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:] self.un_fetch_checkpoint_names.pop(-1) need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:] self.checkpoint_usage_count = {} for checkpoint_name in self.un_fetch_checkpoint_names: self.checkpoint_usage_count[checkpoint_name] = 0 self.bw_strart_op_idx = len(self.block.ops) for idx, op in enumerate(self.block.ops): if int(op.desc.attr("op_role")) == 1: self.bw_strart_op_idx = idx break assert self.bw_strart_op_idx < len( self.block.ops), "Could NOT found backword op in prog" # fetch second to last checkpoint at the beginning of BW fetched_checkpoint_varname = self._record_fetch_op( self.bw_strart_op_idx) last_last_fetch_checkpoint = None for i, op in enumerate(self.block.ops[self.bw_strart_op_idx:]): idx = self.bw_strart_op_idx + i input_vars = op.desc.input_arg_names() for input_var in input_vars: if input_var in need_fetch_checkpoint_names: if input_var not in self.un_fetch_checkpoint_names: # fetch the offloade checkpoint when the first usage of its previous one if self.checkpoint_usage_count[input_var] == 0: # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy second_to_last_fetch_checkpoint = fetched_checkpoint_varname # there is NO fetch ahead the first checkpoint if input_var != self.sorted_checkpoint_names[0]: fetched_checkpoint_varname = self._record_fetch_op( idx) # should check the current used checkpoint is ths last fetch one assert second_to_last_fetch_checkpoint == input_var, "Current recompute segment should use [{}] BUT got [{}]".format( second_to_last_fetch_checkpoint, input_var) # rename self.block.ops[idx]._rename_input( input_var, self.checkpoint_name2fetch_name[input_var]) self.checkpoint_usage_count[input_var] += 1 else: raise ValueError( "use checkpoint [{}] before fetch in BW".format( input_var)) assert len(self.un_fetch_checkpoint_names ) == 0, "{} checkpoints have NOT been Recorded".format( self.un_fetch_checkpoint_names) def _update_backward(self): if len(self.idx2insertions) == 0: return total_op = len(self.block.ops) for op_idx in reversed(range(self.bw_strart_op_idx, total_op)): if op_idx in self.idx2insertions: operation, checkpoint_name = self.idx2insertions[op_idx] if operation == "fetch": self._insert_fetch_op(op_idx, checkpoint_name) logging.debug("Insert [{}] fetch op.".format( checkpoint_name)) del self.idx2insertions[op_idx] elif operation == "sync": self._insert_sync_op(op_idx, checkpoint_name) logging.debug("Sync [{}] fetch op.".format(checkpoint_name)) self.block._sync_with_cpp() assert len( self.idx2insertions) == 0, "{} checkpoints left un-Fecthed".format( [ele[1] for ele in self.idx2insertions.values()]) def _parse_forward(self): self.idx2insertions = {} # don't offload the last checkpoints, faster, less memory saving self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:] last_checkpoint = self.un_offload_checkpoint_names.pop(-1) need_offload_checkpoint_names = self.un_offload_checkpoint_names[:] self.checkpoint_usage_count_and_idx = {} for checkpoint_name in self.un_offload_checkpoint_names: self.checkpoint_usage_count_and_idx[checkpoint_name] = { 'count': 0, 'idx': -1 } self.synced_checkpoints = set() self.fw_strart_op_idx = len(self.block.ops) for idx, op in enumerate(self.block.ops): if int(op.desc.attr("op_role")) == 0: self.fw_strart_op_idx = idx break assert self.fw_strart_op_idx < len( self.block.ops), "Could NOT found Forward op in prog" last_offload_checkpoint = None for i, op in enumerate(self.block.ops[self.fw_strart_op_idx: self.bw_strart_op_idx]): idx = self.fw_strart_op_idx + i output_vars = op.desc.output_arg_names() input_vars = op.desc.input_arg_names() for output_var in output_vars: if output_var in need_offload_checkpoint_names: assert len( output_vars ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format( output_var, op) if output_var in self.un_offload_checkpoint_names: # insert sync op if last checkpoint has not been sync if last_offload_checkpoint != None: if self.checkpoint_usage_count_and_idx[ last_offload_checkpoint]['count'] == 0: self._record_sync_op(idx, last_offload_checkpoint) else: last_usage_idx = self.checkpoint_usage_count_and_idx[ last_offload_checkpoint]['idx'] assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format( last_offload_checkpoint) self._record_sync_op(last_usage_idx + 1, last_offload_checkpoint) # insert offload op after the checkpoint's generation op self._record_offload_op(idx + 1, output_var) last_offload_checkpoint = output_var else: raise ValueError( "There should be just ONE op that output checkpoint [{}]". format(output_var)) # need to sync the last need to offload checkpoint before the last checkpoint as output op if output_var == last_checkpoint: assert len( output_vars ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format( output_var, op) assert last_offload_checkpoint == self.sorted_checkpoint_names[ -2], "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format( last_checkpoint, self.sorted_checkpoint_names[-2], last_offload_checkpoint) # sync if last checkpoint has not been sync if self.checkpoint_usage_count_and_idx[ last_offload_checkpoint]['idx'] == 0: self._record_sync_op(idx, last_offload_checkpoint) else: last_usage_idx = self.checkpoint_usage_count_and_idx[ last_offload_checkpoint]['idx'] assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format( last_offload_checkpoint) self._record_sync_op(last_usage_idx + 1, last_offload_checkpoint) # record checkpoint usage for input_var in input_vars: if input_var in need_offload_checkpoint_names: assert input_var not in self.synced_checkpoints, "checkpoint [{}] used after sync".format( input_var) self.checkpoint_usage_count_and_idx[input_var]['count'] += 1 self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx assert len(self.un_offload_checkpoint_names ) == 0, "{} checkpoints have NOT been Recorded".format( self.un_fetch_checkpoint_names) assert len(self.synced_checkpoints) == len( need_offload_checkpoint_names ), "{} checkpoints have NOT been Recorded".format( set(need_offload_checkpoint_names) - set(self.synced_checkpoints)) def _update_forward(self): if len(self.idx2insertions) == 0: return for op_idx in reversed( range(self.fw_strart_op_idx, self.bw_strart_op_idx)): if op_idx in self.idx2insertions: operation, checkpoint_name = self.idx2insertions[op_idx] if operation == "offload": self._insert_offload_op(op_idx, checkpoint_name) logging.debug("Insert [{}] offload op.".format( checkpoint_name)) del self.idx2insertions[op_idx] elif operation == "sync": self._insert_sync_op(op_idx, checkpoint_name) logging.debug("Insert [{}] offload_sync op.".format( checkpoint_name)) del self.idx2insertions[op_idx] self.block._sync_with_cpp() assert len(self.idx2insertions ) == 0, "{} checkpoints left un-Offloaded".format( [ele[1] for ele in self.idx2insertions.values()]) def _check_offload_fetch(self): # TODO(JZ-LIANG) the single stream offload need no sync pass def _offload(self, loss, startup_program=None): """ core steps for recompute offload 1. create pinned vars and temp vars 2. parse & update Forward pass: offload, sync 3. parse & update Backward pass: rename, fetch, sync 4. verify the correctness """ self._main_program = loss.block.program self.block = loss.block if startup_program == None: startup_program = paddle.static.default_startup_program() with program_guard(self._main_program, startup_program): assert len(self.checkpoint_shape) > 0, ( "checkpoints shape {} should be an non empty list like: [12, 512, 1024]". format(self.checkpoint_shape)) assert all([ele > 0 for ele in self.checkpoint_shape]), ( "all ele in checkpoints shape {} should be a determined integer larger than 0". format(self.checkpoint_shape)) self.checkpoint_name2pinned_name = dict() self.checkpoint_name2fetch_name = dict() for checkpoint_varname in self.sorted_checkpoint_names: pinned_var_name, fetch_var_name = self._creat_vars( checkpoint_varname) self.checkpoint_name2pinned_name[ checkpoint_varname] = pinned_var_name self.checkpoint_name2fetch_name[ checkpoint_varname] = fetch_var_name self._append_fill_constant_ops(startup_program) # TODO (JZ-LIANG) to provide two offload stragtegy in future # step 2. parse & update FW: rename, offload, sync self._parse_backward() self._update_backward() # step 3. parse & update BW: rename, offload, sync self._parse_forward() self._update_forward() # step 4. verify the correctness self._check_offload_fetch() return def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): """ call append_backward with checkpoints. Args: loss (Variable): loss variable to run optimizations. startup_program (Program): startup_program for initializing parameters in `parameter_list`. parameter_list (list): list of Variables or Variable.names to update. no_grad_set (set|None): set of Variables or Variables.names should be ignored. callbacks (list|None): list of callables to run when appending backward operator for one parameter. checkpoints (list): list of Variables as checkpoints Examples: .. code-block:: python import paddle.fluid as fluid def mlp(input_x, input_y, hid_dim=128, label_dim=2): fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) print("Finished FF") sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([fc_1, pred]) params_grads = sgd.backward( cost, startup_program=None, parameter_list=None, no_grad_set=None) print("Finished backward") """ assert (self._checkpoints is not None ), "You should call _set_checkpoints first" if framework._non_static_mode(): raise NotImplementedError( "DyGraph current does not support recompute") self._dtype = loss.dtype program = loss.block.program with program_guard(program, startup_program): checkpoint_vars = [] for ckpt in self._checkpoints: if isinstance(ckpt, Variable): checkpoint_vars.append(ckpt) else: checkpoint_vars.append(loss.block.var(ckpt)) # allow return to non-recompute when checkpoints is empty if len(checkpoint_vars) > 0: params_grads, sorted_checkpoint_names = append_backward( loss, parameter_list, no_grad_set, checkpoints=checkpoint_vars) else: params_grads = append_backward( loss, parameter_list, no_grad_set, checkpoints=checkpoint_vars) if self.enable_offload: self.sorted_checkpoint_names = sorted_checkpoint_names self._offload(loss, startup_program=startup_program) return params_grads def apply_optimize(self, loss, startup_program, params_grads): """ call the apply_optimize function of self._optimizer Args: loss (Variable): loss variable to run optimizations. startup_program (Program): startup_program for initializing parameters in `parameter_list`. params_grads (list): list of (param, grad) pair to do optimization. Examples: .. code-block:: python import paddle.fluid as fluid def mlp(input_x, input_y, hid_dim=128, label_dim=2): fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) print("Finished FF") sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([fc_1, pred]) params_grads = sgd.backward( cost, startup_program=None, parameter_list=None, no_grad_set=None) optimize_ops = sgd.apply_optimize( cost, startup_program=None, params_grads=params_grads) print("Finished apply_optimize") """ func = self._optimizer.apply_optimize if hasattr( self._optimizer, 'apply_optimize') else self._optimizer._apply_optimize return func( loss, startup_program=startup_program, params_grads=params_grads) def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): assert isinstance(loss, Variable), "The loss should be an Variable." assert (self._checkpoints is not None ), "You should call _set_checkpoints first" if framework._non_static_mode(): raise NotImplementedError( "DyGraph current does not support recompute") params_grads = self.backward( loss, startup_program=startup_program, parameter_list=parameter_list, no_grad_set=no_grad_set) optimize_ops = self.apply_optimize( loss, startup_program=startup_program, params_grads=params_grads) return optimize_ops, params_grads class LookaheadOptimizer(object): r""" :api_attr: Static Graph This implements the Lookahead optimizer of the paper : https://arxiv.org/abs/1907.08610. Lookahead keeps two sets of params: the fast_params and the slow_params. inner_optimizer update fast_params every training step. Lookahead updates the slow_params and fast_params every k training steps as follows: .. math:: slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1}) fast\_param_t &= slow\_param_t Args: inner_optimizer (Optimizer): The optimizer that update fast params step by step. alpha (float): The learning rate of Lookahead. k (int): The slow params is updated every k steps. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np import numpy.random as random paddle.enable_static() x = fluid.layers.data(name='x', shape=[2], dtype='float32') label = fluid.layers.data(name="label", shape=[1], dtype="int64") y = fluid.layers.fc(input=[x], size=2, act="softmax") loss = fluid.layers.cross_entropy(input=y, label=label) loss = fluid.layers.mean(x=loss) sgd = fluid.optimizer.SGD(learning_rate=0.01) optimizer = fluid.optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5) optimizer.minimize(loss) main_program = fluid.default_main_program() place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) def train_reader(limit=5): for i in range(limit): yield random.random([2]).astype('float32'), random.random([1]).astype('int64') feeder = fluid.DataFeeder(feed_list=[x, label], place=place) reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1) for batch_data in reader(): exe.run(fluid.default_main_program(), feed=feeder.feed(batch_data)) """ def __init__(self, inner_optimizer, alpha=0.5, k=5): if framework._non_static_mode(): raise Exception("In dygraph, don't support LookaheadOptimizer.") assert (inner_optimizer is not None), "inner optimizer can not be None" assert ( 0.0 <= alpha <= 1.0 ), "alpha should be larger or equal to 0.0, and less or equal than 1.0" assert (isinstance(k, int) and k > 0), "k should be a positive integer" self.inner_optimizer = inner_optimizer self.alpha = alpha self.k = k self.type = "lookahead" def minimize(self, loss, startup_program=None): # Apply inner optimizer to the main_program mini_out = self.inner_optimizer.minimize( loss, startup_program=startup_program) # Get startup_program and main_program if startup_program is None: startup_program = default_startup_program() main_block = loss.block # add some vars to the main_program params = [param.name for param in main_block.all_parameters()] param_to_slow = {} for param in params: fast_var = main_block.var(param) assert (fast_var is not None) slow_var = main_block.create_var( name=param + "@SLOW", shape=fast_var.shape, dtype=fast_var.dtype, persistable=True) param_to_slow[param] = slow_var # add some vars to the startup_program startup_block = startup_program.global_block() for param in params: fast_var = startup_block.var(param) assert (fast_var is not None) slow_var = startup_block.create_var( name=param + "@SLOW", shape=fast_var.shape, dtype=fast_var.dtype, persistable=True) startup_block.append_op( type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}) with framework.program_guard(main_block.program, startup_program): # Add Var k to main prog and startup prog k = layers.create_global_var( name="lookahead_k", shape=[1], value=int(self.k), dtype='int32', persistable=True) # Add Var alpha to main prog and startup prog alpha = layers.create_global_var( name="lookahead_alpha", shape=[1], value=float(self.alpha), dtype='float32', persistable=True) # Add Var step step = layers.create_global_var( name="lookahead_step", shape=[1], value=int(0), dtype='int32', persistable=True) layers.increment(x=step, value=1.0, in_place=True) # lookahead zero_var = layers.fill_constant( shape=[1], dtype='float32', value=0.0) one_var = layers.fill_constant( shape=[1], dtype='float32', value=1.0) mod = layers.elementwise_mod(step, k) with layers.control_flow.Switch() as switch: with switch.case(step == one_var): for param_name in params: fast_var = main_block.var(param_name) slow_var = param_to_slow[param_name] layers.assign(input=fast_var, output=slow_var) with switch.case(mod == zero_var): for param_name in params: fast_var = main_block.var(param_name) slow_var = param_to_slow[param_name] tmp_var = layers.elementwise_add( layers.elementwise_mul(fast_var, alpha), layers.elementwise_mul( slow_var, layers.elementwise_sub(one_var, alpha))) layers.assign(input=tmp_var, output=slow_var) layers.assign(input=tmp_var, output=fast_var) with switch.default(): pass return mini_out class GradientMergeOptimizer(object): """ Gradient Merge, also called as Gradient Accumulation, is a training strategy for larger batches. With this strategy, the parameter will not be updated until specific steps. For each step, the forward network and the backward network will run to calculate the gradient of the parameters. For every k step, the optimization network will run, applying a specific optimization method (such as SGD, Adam) to the parameters. Args: inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam) which update the parameters k_steps (int): the update period of the parameters avg (bool): whether to average the gradients of each mini-batch, the default value is `True` Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(batch_size): return {"x": np.random.random(size=(batch_size, 32)).astype('float32'), "y": np.random.random(size=(batch_size, 1)).astype('int64')} def mlp(input_x, input_y, hid_dim=128, label_dim=2): fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True) sgd.minimize(cost) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for i in range(10): cost_val = exe.run(feed=gen_data(32), program=fluid.default_main_program(), fetch_list=[cost.name]) print("step=%d, cost=%f" % (i, cost_val[0])) """ GRAD_MERGE_COND_NAME = "grad_merge_cond_name" def __init__(self, inner_optimizer, k_steps=1, avg=True): if framework._non_static_mode(): raise Exception( "In dygraph, we don't support GradientMergeOptimizer." "You can do Gradient merge by yourself with k-times forward + backward, " "and one-time optimizer.minimize()") assert (inner_optimizer is not None), "inner optimizer can not be None" assert (isinstance(k_steps, int) and k_steps > 0), "k_steps should be a positive integer" self.inner_optimizer = inner_optimizer self.k_steps = k_steps self.type = "gradient_merge" self.avg = avg self._optimize_ops = None def _set_k_steps(self, k_steps): self.k_steps = k_steps def _set_avg(self, avg): self.avg = avg def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): assert isinstance(loss, Variable), "The loss should be an Variable." assert ( parameter_list is None ), "The parameter_list should be None when using GradientMergeOptimizer" assert ( no_grad_set is None ), "The no_grad_set should be None when using GradientMergeOptimizer" params_grads = self.inner_optimizer.backward( loss, startup_program=startup_program) return params_grads def apply_optimize(self, loss, startup_program, params_grads): program = loss.block.program with program_guard(program, startup_program): optimize_ops = self.apply_gradients(params_grads) return optimize_ops def _is_the_backward_op(self, op): op_maker = core.op_proto_and_checker_maker backward = core.op_proto_and_checker_maker.OpRole.Backward if op_maker.kOpRoleVarAttrName() in op.attr_names and \ int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward): return True return False def _remove_op_role_var(self, param, grad): op_maker = core.op_proto_and_checker_maker op = grad.op assert self._is_the_backward_op(op), \ 'grad.op={} is not the backward op which produces the grad={}' \ .format(op, grad.name) block = grad.block var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()] assert param.name in var_attr, \ 'when using GradientMergeOptimizer, param={} must be in var_attr={}' \ .format(param.name, var_attr) assert grad.name in var_attr, \ 'when using GradientMergeOptimizer, grad={} must be in var_attr={}' \ .format(param.name, var_attr) # remove (param, grad) from op_role_var var_attr.remove(param.name) var_attr.remove(grad.name) if len(var_attr) > 1: op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr) else: op._remove_attr(op_maker.kOpRoleVarAttrName()) def _add_gm_op_role_var(self, op, param, grad, cond): grad.op = op op_maker = core.op_proto_and_checker_maker backward = op_maker.OpRole.Backward # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else # do nothing. # In this way, the gradient can be merged first, and then communicate when the # condition is met, reducing the number of communications to increase the # speed. op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name) op._set_attr(op_maker.kOpRoleAttrName(), backward) op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name]) def _get_gm_cond_var(self, main_block): # Add const var k_step_var = layers.create_global_var( name="gradient_merge_k", shape=[1], value=int(self.k_steps), dtype='int32', persistable=True, force_cpu=True) zero_var = layers.create_global_var( name="gradient_merge_zero", shape=[1], value=int(0), dtype='int32', persistable=True, force_cpu=True) # Add step var & cond var step_var = layers.create_global_var( name="gradient_merge_step", shape=[1], value=int(0), dtype='int32', persistable=True, force_cpu=True) cond_var = main_block.create_var( name="gradient_merge_cond", shape=[1], dtype='bool') with device_guard("cpu"): # step_var = (step_var + 1) % k_step layers.increment(x=step_var, value=1.0, in_place=True) main_block.append_op( type='elementwise_mod', inputs={'X': step_var, 'Y': k_step_var}, outputs={'Out': step_var}, attrs={'axis': -1, 'use_mkldnn': False}) # cond_var = (step_var == 0) main_block.append_op( type='equal', inputs={'X': step_var, 'Y': zero_var}, outputs={'Out': cond_var}) return cond_var def apply_gradients(self, params_grads): main_program = default_main_program() startup_program = default_startup_program() main_block = main_program.global_block() startup_block = startup_program.global_block() cond = self._get_gm_cond_var(main_block) #TODO(mapingshuo) support sparse embedding # step1: remove grad.op's op_role_var for param, grad in params_grads: assert ( param.type != core.VarDesc.VarType.SELECTED_ROWS ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now" self._remove_op_role_var(param, grad) param_to_grad = {k.name: v for (k, v) in params_grads} param_names = param_to_grad.keys() param_to_gradient_merge = {} new_params_grads = [] # step2: create gradient_merge var and init with 0 # and update op_role_var for param, grad in params_grads: param_name = param.name param_var = main_block.var(param_name) assert (param_var is not None) gradient_merge_var = main_block.create_var( name=param_name + "@GRAD@GradientMerge", shape=param_var.shape, dtype=param_var.dtype, persistable=True) param_to_gradient_merge[param_name] = gradient_merge_var startup_gradient_merge_var = startup_block.create_var( name=param_name + "@GRAD@GradientMerge", shape=param_var.shape, dtype=param_var.dtype, persistable=True) startup_block.append_op( type="fill_constant", outputs={"Out": startup_gradient_merge_var}, attrs={ "shape": param_var.shape, "dtype": param_var.dtype, "value": float(0), }) # grad_merge += grad new_grad_op = main_block.append_op( type="elementwise_add", inputs={'X': grad, 'Y': gradient_merge_var}, outputs={'Out': gradient_merge_var}, attrs={'axis': -1, 'use_mkldnn': False}) self._add_gm_op_role_var(new_grad_op, param, gradient_merge_var, cond) new_params_grads.append([param, gradient_merge_var]) def true_apply_gradient(): cur_block_idx = main_program.current_block_idx cur_block = main_program.current_block() # cur_block's forward_block & backward_block is itself cur_block._set_forward_block_idx(cur_block_idx) op_maker = core.op_proto_and_checker_maker if self.avg: for param, new_grad in new_params_grads: # grad /= k_steps cur_block.append_op( type='scale', inputs={'X': new_grad}, outputs={'Out': new_grad}, attrs={ 'scale': 1.0 / self.k_steps, 'bias': 0.0, 'bias_after_scale': False }) new_grad.op._set_attr(op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward) for param, new_grad in new_params_grads: # NOTE. regularization will append ops to grad.block, # while new_grad's real block is global_block, # but we want append regularization ops to cur_block, # so we set new_grad.block = cur_block new_grad.block = cur_block self._optimize_ops = self.inner_optimizer.apply_gradients( new_params_grads) # clear gradient_merge_vars for param, new_grad in new_params_grads: layers.fill_constant( shape=new_grad.shape, dtype=new_grad.dtype, value=0.0, out=new_grad) new_grad.op._set_attr(op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize) # step3. apply gradient layers.cond(cond, true_fn=true_apply_gradient, false_fn=None) return self._optimize_ops def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): assert isinstance(loss, Variable), "The loss should be an Variable." params_grads = self.backward( loss, startup_program=startup_program, parameter_list=parameter_list, no_grad_set=no_grad_set) optimize_ops = self.apply_optimize( loss, startup_program=startup_program, params_grads=params_grads) return optimize_ops, params_grads