# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import six from collections import defaultdict from paddle.fluid import core from paddle.fluid import framework __all__ = ['Tracer'] def release_op(op): del framework._dygraph_tracer()._ops[op._trace_id].inputs class Tracer(core.Tracer): """ Python wrapper of dygraph tracer """ def __init__(self, block): super(Tracer, self).__init__(block) self._ops = defaultdict() self._vars = defaultdict() self._trace_id = 0 def trace_var(self, name, var): self._vars[name] = var def all_parameters(self): return list((item for name, item in six.iteritems(self._vars) if isinstance(item, framework.Parameter))) def trace_op(self, op, inputs, outputs, stop_gradient=False): # TODO(minqiyang): remove this line after we take apart all # backward grads and forward variables op.inputs = inputs inps = defaultdict(list) for k, vars in six.iteritems(inputs): if isinstance(vars, framework.Variable): op.previous_ops.append(vars.op) inps[k].append(vars._ivar) elif isinstance(vars, list) or isinstance(vars, tuple): for var in vars: op.previous_ops.append(var.op) inps[k].append(var._ivar) outs = defaultdict(list) for k, vars in six.iteritems(outputs): if isinstance(vars, framework.Variable): vars.op = op outs[k].append(vars._ivar) elif isinstance(vars, list) or isinstance(vars, tuple): for var in vars: var.op = op outs[k].append(var._ivar) # record op's trace id op.iop._trace_id = self._trace_id backward_refs = self.trace(op.iop, inps, outs, op.attrs, framework._current_expected_place(), stop_gradient) if not stop_gradient: self._trace_id += 1 self._ops[op.iop._trace_id] = op # register backward hooks and variables if needed if len(backward_refs) > 0: op.iop.register_backward_hooks(release_op) # TODO(minqiyang): remove all inputs and outputs after separate # var and grad op.backward_refs = defaultdict(list) for k, v in six.iteritems(inputs): if k in backward_refs: op.backward_refs[k] = inputs[k] for k, v in six.iteritems(outputs): if k in backward_refs: op.backward_refs[k] = outputs[k]