# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer.PyDataProvider2 import * UNK_IDX = 2 START = "" END = "" def hook(settings, src_dict_path, trg_dict_path, is_generating, file_list, **kwargs): # job_mode = 1: training mode # job_mode = 0: generating mode settings.job_mode = not is_generating def fun(dict_path): out_dict = dict() with open(dict_path, "r") as fin: out_dict = { line.strip(): line_count for line_count, line in enumerate(fin) } return out_dict settings.src_dict = fun(src_dict_path) settings.trg_dict = fun(trg_dict_path) settings.logger.info("src dict len : %d" % (len(settings.src_dict))) if settings.job_mode: settings.slots = { 'source_language_word': integer_value_sequence(len(settings.src_dict)), 'target_language_word': integer_value_sequence(len(settings.trg_dict)), 'target_language_next_word': integer_value_sequence(len(settings.trg_dict)) } settings.logger.info("trg dict len : %d" % (len(settings.trg_dict))) else: settings.slots = { 'source_language_word': integer_value_sequence(len(settings.src_dict)), 'sent_id': integer_value_sequence(len(open(file_list[0], "r").readlines())) } def _get_ids(s, dictionary): words = s.strip().split() return [dictionary[START]] + \ [dictionary.get(w, UNK_IDX) for w in words] + \ [dictionary[END]] @provider(init_hook=hook, pool_size=50000) def process(settings, file_name): with open(file_name, 'r') as f: for line_count, line in enumerate(f): line_split = line.strip().split('\t') if settings.job_mode and len(line_split) != 2: continue src_seq = line_split[0] # one source sequence src_ids = _get_ids(src_seq, settings.src_dict) if settings.job_mode: trg_seq = line_split[1] # one target sequence trg_words = trg_seq.split() trg_ids = [settings.trg_dict.get(w, UNK_IDX) for w in trg_words] # remove sequence whose length > 80 in training mode if len(src_ids) > 80 or len(trg_ids) > 80: continue trg_ids_next = trg_ids + [settings.trg_dict[END]] trg_ids = [settings.trg_dict[START]] + trg_ids yield { 'source_language_word': src_ids, 'target_language_word': trg_ids, 'target_language_next_word': trg_ids_next } else: yield {'source_language_word': src_ids, 'sent_id': [line_count]}