# edit-mode: -*- python -*- # Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * dict_file = "./data/dict.txt" word_dict = dict() with open(dict_file, 'r') as f: for i, line in enumerate(f): w = line.strip().split()[0] word_dict[w] = i is_predict = get_config_arg('is_predict', bool, False) trn = 'data/train.list' if not is_predict else None tst = 'data/test.list' if not is_predict else 'data/pred.list' process = 'process' if not is_predict else 'process_predict' define_py_data_sources2( train_list=trn, test_list=tst, module="dataprovider_emb", obj=process, args={"dictionary": word_dict}) batch_size = 128 if not is_predict else 1 settings( batch_size=batch_size, learning_rate=2e-3, learning_method=AdamOptimizer(), regularization=L2Regularization(8e-4), gradient_clipping_threshold=25) bias_attr = ParamAttr(initial_std=0., l2_rate=0.) data = data_layer(name="word", size=len(word_dict)) emb = embedding_layer(input=data, size=128) hidden_0 = mixed_layer(size=128, input=[full_matrix_projection(input=emb)]) lstm_0 = lstmemory(input=hidden_0, layer_attr=ExtraAttr(drop_rate=0.1)) input_layers = [hidden_0, lstm_0] for i in range(1, 8): fc = fc_layer(input=input_layers, size=128) lstm = lstmemory( input=fc, layer_attr=ExtraAttr(drop_rate=0.1), reverse=(i % 2) == 1, ) input_layers = [fc, lstm] lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling()) output = fc_layer( input=lstm_last, size=2, bias_attr=bias_attr, act=SoftmaxActivation()) if is_predict: maxid = maxid_layer(output) outputs([maxid, output]) else: label = data_layer(name="label", size=2) cls = classification_cost(input=output, label=label) outputs(cls)