from __future__ import print_function import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid BATCH_SIZE = 128 CLIP_MAX = 2e-6 CLIP_MIN = -1e-6 prog = fluid.framework.Program() with fluid.program_guard(main_program=prog): image = fluid.layers.data(name='x', shape=[784], dtype='float32') hidden1 = fluid.layers.fc(input=image, size=128, act='relu') hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu') predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') label = fluid.layers.data(name='y', shape=[1], dtype='int64') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) prog_clip = prog.clone() prog_clip.block(0).var(hidden1.name).set_error_clip( fluid.clip.ErrorClipByValue( max=CLIP_MAX, min=CLIP_MIN)) avg_cost_clip = prog_clip.block(0).var(avg_cost.name) fluid.backward.append_backward(loss=avg_cost) fluid.backward.append_backward( loss=avg_cost_clip, callback=fluid.clip.error_clip_callback) hidden1_grad = prog.block(0).var(hidden1.name + "@GRAD") hidden1_grad_clip = prog_clip.block(0).var(hidden1.name + "@GRAD") train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=BATCH_SIZE) place = fluid.CPUPlace() exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=[image, label], place=place) exe.run(fluid.default_startup_program()) count = 0 for data in train_reader(): count += 1 if count > 5: break out = exe.run(prog, feed=feeder.feed(data), fetch_list=[hidden1_grad]) out_clip = exe.run(prog_clip, feed=feeder.feed(data), fetch_list=[hidden1_grad_clip]) if not (out[0].clip(min=CLIP_MIN, max=CLIP_MAX) == out_clip[0]).all(): exit(1) exit(0)