# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ When training a model, it's often useful to decay the learning rate during training process, this is called learning_rate_decay. There are many strategies to do this, this module will provide some classical method. User can also implement their own learning_rate_decay strategy according to this module. """ from __future__ import print_function import math import numbers from . import control_flow from . import nn from . import ops from . import tensor from ..initializer import init_on_cpu from ..framework import default_main_program, Parameter, unique_name, name_scope from ..framework import Variable from ..dygraph import base as imperative_base from ..dygraph import learning_rate_scheduler as imperate_lr __all__ = [ 'exponential_decay', 'natural_exp_decay', 'inverse_time_decay', 'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay', 'linear_lr_warmup' ] def _decay_step_counter(begin=0): # the first global step is zero in learning rate decay global_step = nn.autoincreased_step_counter( counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1) global_step = tensor.cast(global_step, 'float32') return global_step def noam_decay(d_model, warmup_steps): """ Noam decay method. The numpy implementation of noam decay as follows. .. code-block:: python import padde.fluid as fluid import numpy as np # set hyper parameters d_model = 2 current_steps = 20 warmup_steps = 200 # compute lr_value = np.power(d_model, -0.5) * np.min([ np.power(current_steps, -0.5), np.power(warmup_steps, -1.5) * current_steps]) Please reference `attention is all you need `_. Args: d_model(Variable): The dimensionality of input and output of model. warmup_steps(Variable): A super parameter. Returns: The decayed learning rate. Examples: .. code-block:: python import padde.fluid as fluid warmup_steps = 100 learning_rate = 0.01 lr = fluid.layers.learning_rate_scheduler.noam_decay( 1/(warmup_steps *(learning_rate ** 2)), warmup_steps) """ with default_main_program()._lr_schedule_guard(): if imperative_base.enabled(): decay = imperate_lr.NoamDecay(d_model, warmup_steps) return decay else: global_step = _decay_step_counter(1) a = global_step**-0.5 b = (warmup_steps**-1.5) * global_step lr_value = (d_model**-0.5) * nn.elementwise_min(a, b) return lr_value def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False): """ Applies exponential decay to the learning rate. When training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, the learning rate will be decayed by 'decay_rate' every 'decay_steps' steps. >>> if staircase == True: >>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps) >>> else: >>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) Args: learning_rate(Variable|float): The initial learning rate. decay_steps(int): See the decay computation above. decay_rate(float): The decay rate. See the decay computation above. staircase(Boolean): If True, decay the learning rate at discrete intervals. Default: False Returns: Variable: The decayed learning rate Examples: .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.exponential_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) """ with default_main_program()._lr_schedule_guard(): if imperative_base.enabled(): decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps, decay_rate, staircase) return decay else: global_step = _decay_step_counter() div_res = global_step / decay_steps if staircase: div_res = ops.floor(div_res) decayed_lr = learning_rate * (decay_rate**div_res) return decayed_lr def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False): """Applies natural exponential decay to the initial learning rate. >>> if not staircase: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) >>> else: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps)) Args: learning_rate: A scalar float32 value or a Variable. This will be the initial learning rate during training decay_steps: A Python `int32` number. decay_rate: A Python `float` number. staircase: Boolean. If set true, decay the learning rate every decay_steps. Returns: The decayed learning rate Examples: .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.natural_exp_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) """ with default_main_program()._lr_schedule_guard(): if imperative_base.enabled(): decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps, decay_rate, staircase) return decay else: global_step = _decay_step_counter() div_res = global_step / decay_steps if staircase: div_res = ops.floor(div_res) decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res) return decayed_lr def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False): """ Applies inverse time decay to the initial learning rate. When training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, an inverse decay function will be applied to the initial learning rate. >>> if staircase == True: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step)) >>> else: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step) Args: learning_rate(Variable|float): The initial learning rate. decay_steps(int): See the decay computation above. decay_rate(float): The decay rate. See the decay computation above. staircase(Boolean): If True, decay the learning rate at discrete intervals. Default: False Returns: Variable: The decayed learning rate Examples: .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.natural_exp_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) """ with default_main_program()._lr_schedule_guard(): if imperative_base.enabled(): decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps, decay_rate, staircase) return decay else: global_step = _decay_step_counter() div_res = global_step / decay_steps if staircase: div_res = ops.floor(div_res) decayed_lr = learning_rate / (1 + decay_rate * div_res) return decayed_lr def polynomial_decay(learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False): """ Applies polynomial decay to the initial learning rate. .. code-block:: text if cycle: decay_steps = decay_steps * ceil(global_step / decay_steps) else: global_step = min(global_step, decay_steps) decayed_learning_rate = (learning_rate - end_learning_rate) * (1 - global_step / decay_steps) ^ power + end_learning_rate Args: learning_rate(Variable|float32): A scalar float32 value or a Variable. This will be the initial learning rate during training. decay_steps(int32): A Python `int32` number. end_learning_rate(float): A Python `float` number. power(float): A Python `float` number. cycle(bool): If set true, decay the learning rate every decay_steps. Returns: Variable: The decayed learning rate Examples: .. code-block:: python import paddle.fluid as fluid start_lr = 0.01 total_step = 5000 end_lr = 0 lr = fluid.layers.polynomial_decay( start_lr, total_step, end_lr, power=1) """ with default_main_program()._lr_schedule_guard(): if imperative_base.enabled(): decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps, end_learning_rate, power, cycle) return decay else: global_step = _decay_step_counter() if cycle: div_res = ops.ceil(global_step / decay_steps) zero_var = tensor.fill_constant( shape=[1], dtype='float32', value=0.0) one_var = tensor.fill_constant( shape=[1], dtype='float32', value=1.0) with control_flow.Switch() as switch: with switch.case(global_step == zero_var): tensor.assign(input=one_var, output=div_res) decay_steps = decay_steps * div_res else: decay_steps_var = tensor.fill_constant( shape=[1], dtype='float32', value=float(decay_steps)) global_step = nn.elementwise_min( x=global_step, y=decay_steps_var) decayed_lr = (learning_rate - end_learning_rate) * \ ((1 - global_step / decay_steps) ** power) + end_learning_rate return decayed_lr def piecewise_decay(boundaries, values): """Applies piecewise decay to the initial learning rate. The algorithm can be described as the code below. .. code-block:: text boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] if step < 10000: learning_rate = 1.0 elif 10000 <= step < 20000: learning_rate = 0.5 else: learning_rate = 0.1 Args: boundaries: A list of steps numbers. values: A list of learning rate values that will be picked during different step boundaries. Returns: The decayed learning rate. Examples: .. code-block:: python import paddle.fluid as fluid boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] optimizer = fluid.optimizer.Momentum( momentum=0.9, learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values), regularization=fluid.regularizer.L2Decay(1e-4)) """ with default_main_program()._lr_schedule_guard(): if len(values) - len(boundaries) != 1: raise ValueError("len(values) - len(boundaries) should be 1") if imperative_base.enabled(): decay = imperate_lr.PiecewiseDecay(boundaries, values, 0) return decay else: global_step = _decay_step_counter() lr = tensor.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="learning_rate") with control_flow.Switch() as switch: for i in range(len(boundaries)): boundary_val = tensor.fill_constant( shape=[1], dtype='float32', value=float(boundaries[i]), force_cpu=True) value_var = tensor.fill_constant( shape=[1], dtype='float32', value=float(values[i])) with switch.case(global_step < boundary_val): tensor.assign(value_var, lr) last_value_var = tensor.fill_constant( shape=[1], dtype='float32', value=float(values[len(values) - 1])) with switch.default(): tensor.assign(last_value_var, lr) return lr def cosine_decay(learning_rate, step_each_epoch, epochs): """ Applies cosine decay to the learning rate. when training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, the learning rate will be decayed by following cosine decay strategy. .. math:: decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1) Args: learning_rate(Variable|float): The initial learning rate. step_each_epoch(int): the number of steps in an epoch. epochs(int): the number of epochs. Returns: Variable: The decayed learning rate. Examples: .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 lr = fluid.layers.cosine_decay( learning_rate = base_lr, step_each_epoch=10000, epochs=120) """ with default_main_program()._lr_schedule_guard(): if imperative_base.enabled(): decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch, epochs) return decay else: global_step = _decay_step_counter() cur_epoch = ops.floor(global_step / step_each_epoch) decayed_lr = learning_rate * 0.5 * ( ops.cos(cur_epoch * math.pi / epochs) + 1) return decayed_lr def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr): """ Applies linear learning rate warmup before the normal learning rate scheduling. .. code-block:: python if global_step < warmup_steps: linear_step = end_lr - start_lr lr = start_lr + linear_step * (global_step / warmup_steps) Args: learning_rate (float | Variable): A float value or Variable. warmup_steps (int): The warmup steps. start_lr (float): The start learning rate of warmup. end_lr (float): The end learning rate of warmup. Returns: The decayed learning rate in warmup period. Examples: .. code-block:: python import paddle.fluid as fluid boundaries = [100, 200] lr_steps = [0.1, 0.01, 0.001] warmup_steps = 50 start_lr = 1. / 3. end_lr = 0.1 decayed_lr = fluid.layers.linear_lr_warmup( fluid.layers.piecewise_decay(boundaries, lr_steps), warmup_steps, start_lr, end_lr) """ dtype = 'float32' if isinstance(learning_rate, Variable): dtype = learning_rate.dtype linear_step = float(end_lr) - float(start_lr) with default_main_program()._lr_schedule_guard(): lr = tensor.create_global_var( shape=[1], value=0.0, dtype=dtype, persistable=True, name="learning_rate_warmup") global_step = _decay_step_counter() with control_flow.Switch() as switch: with switch.case(global_step < warmup_steps): decayed_lr = start_lr + linear_step * (global_step / float(warmup_steps)) tensor.assign(decayed_lr, lr) with switch.default(): if not isinstance(learning_rate, Variable): learning_rate = tensor.fill_constant( shape=[1], dtype=dtype, value=float(learning_rate)) tensor.assign(learning_rate, lr) return lr