/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "FunctionTest.h" #include "paddle/math/Matrix.h" #include "paddle/math/SparseMatrix.h" #include "paddle/testing/TestUtil.h" using namespace paddle; // NOLINT void testSpMatrixMul(int M, int N, int K, real rate, real scale1, real scale2) { /// todo(tianbing) check CPU/GPU const auto gpuFunc = FunctionBase::funcRegistrar_.createByType("MulOp-GPU"); gpuFunc->init(FuncConfig().set("scaleAB", scale1).set("scaleT", scale2)); int nnz = M * N * rate; MatrixPtr cpuA = std::make_shared(M, K); MatrixPtr cpuB = std::make_shared(N, K); MatrixPtr cpuC(new CpuSparseMatrix(M, N, nnz)); MatrixPtr gpuA = std::make_shared(M, K); MatrixPtr gpuB = std::make_shared(N, K); MatrixPtr gpuC(new GpuSparseMatrix(M, N, nnz)); cpuA->randomizeUniform(); cpuB->randomizeUniform(); cpuC->randomizeUniform(); hl_stream_t stream(HPPL_STREAM_3); gpuA->copyFrom(*cpuA, stream); gpuB->copyFrom(*cpuB, stream); gpuC->copyFrom(*cpuC, stream); hl_stream_synchronize(stream); BufferArgs inputs; BufferArgs outputs; inputs.addArg(*gpuA->getTranspose()); inputs.addArg(*gpuB->getTranspose()); outputs.addArg(*gpuC, ASSIGN_TO); gpuFunc->calc(inputs, outputs); } TEST(SMatrix, sMatrixMul) { for (auto M : {1, 40, 128, 200}) { for (auto N : {100}) { for (auto K : {100}) { /// todo(tianbing), add scaleAB and scaleT VLOG(3) << " M=" << M << " N=" << N << " K=" << K; testSpMatrixMul(M, N, K, 0.05, 1, 1); } } } }