// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/conv_transpose_grad_kernel.h" #include "paddle/fluid/operators/math/im2col.h" #include "paddle/fluid/operators/math/vol2col.h" #include "paddle/phi/common/layout.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/kernels/cpu/conv_util.h" #include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/concat_and_split_functor.h" #include "paddle/phi/kernels/funcs/slice.h" namespace phi { template void ConvTransposeGradRawKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& filter, const DenseTensor& dout, const std::vector& strides, const std::vector& paddings, const std::string& padding_algorithm, int groups, const std::vector& dilations, const std::string& data_format, DenseTensor* dx, DenseTensor* dfilter) { const DataLayout data_layout = paddle::framework::StringToDataLayout(data_format); // For filter, we do not use const pointer because we will do reshape, // but we should avoid modifying its value. DenseTensor filter_ = filter; if ((!dx) && (!dfilter)) { return; } std::vector paddings_ = paddings; std::vector dilations_ = dilations; auto x_dims = x.dims(); auto filter_dims = filter_.dims(); auto dout_dims = dout.dims(); const int batch_size = static_cast(x.dims()[0]); DDim in_data_dims; if (data_layout != DataLayout::kNHWC) { in_data_dims = slice_ddim(x_dims, 2, x_dims.size()); } else { in_data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1); } DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = vectorize(filter_data_dims); UpdatePaddingAndDilation( &paddings_, &dilations_, padding_algorithm, in_data_dims, strides, ksize); // x_shape_vec: {n, c, h, w} or {n, c, d, h, w} for channel_first // x_shape_vec: {n, h, w, c} or {n, d, h, w, c} for channel_last std::vector x_shape_vec = vectorize(x.dims()); // filter_shape_vec: {i_c, o_c, k_h, k_w} or {i_c, o_c, k_d, k_h, k_w} std::vector filter_shape_vec = vectorize(filter_.dims()); // use col_shape in the im2col and col2im (or vol2col and col2vol) // calculation // col_shape_vec: {o_c, k_h, k_w, h, w} or {o_c, k_d, k_h, k_w, d, h, w} for size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); if (data_layout != DataLayout::kNHWC) { col_shape_vec[0] = dout_dims[1]; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = x_shape_vec[j + 2]; } } else { col_shape_vec[0] = dout_dims[dout_dims.size() - 1]; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = x_shape_vec[j + 1]; } } DDim col_shape(make_ddim(col_shape_vec)); // use col_matrix_shape in the gemm calculation // size: (o_c * k_h * k_w, h * w) or (o_c * k_d * k_h * k_w, d * h * w) DDim col_matrix_shape = flatten_to_2d(col_shape, data_dim + 1); // output size: (o_c, o_h, o_w) or (o_c, o_d, o_h, o_w) for channel_first // output size: (o_h, o_w, o_c) or (o_d, o_h, o_w, o_c) for channel_last DDim output_shape = slice_ddim(dout.dims(), 1, dout.dims().size()); // x matrix size: (i_c, h * w) or (i_c, d * h * w) for channel_first // x matrix size: (h * w, i_c) or (d * h * w, i_c) for channel_last DDim x_matrix_shape; if (data_layout != DataLayout::kNHWC) { x_matrix_shape = {x_dims[1], col_matrix_shape[1]}; } else { x_matrix_shape = {col_matrix_shape[1], x_dims[x_dims.size() - 1]}; } // filter size: (i_c, o_c/g * k_h * k_w) or (i_c, o_c/g * k_d * k_h * k_w) DDim filter_matrix_shape; if (data_layout != DataLayout::kNHWC) { filter_matrix_shape = {x_dims[1], col_matrix_shape[0] / groups}; } else { filter_matrix_shape = {x_dims[x_dims.size() - 1], col_matrix_shape[0] / groups}; } filter_.Resize(filter_matrix_shape); int in_step = (data_layout != DataLayout::kNHWC ? static_cast(x_dims[1]) / groups : static_cast(x_dims[x_dims.size() - 1]) / groups); int col_step = static_cast(col_matrix_shape[0]) / groups; // convolution transpose grad on x: // im2col + gemm (similar to conv-forward) // x need to compute gradient auto blas = funcs::GetBlas(ctx); if (dx || dfilter) { DenseTensor col; col.Resize(col_shape); ctx.template Alloc(&col); // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. DenseTensor col_matrix; col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); DenseTensor dfilter_; funcs::SetConstant set_zero; paddle::operators::math:: Im2ColFunctor im2col; paddle::operators::math::Vol2ColFunctor vol2col; funcs::ConcatFunctor concat_functor; if (dx) { ctx.template Alloc(dx); set_zero(ctx, dx, static_cast(0)); } if (dfilter) { // dfilter_ size (i_c, o_c/g, k_h, k_w) ctx.template Alloc(dfilter); set_zero(ctx, dfilter, static_cast(0)); dfilter_ = *dfilter; dfilter_.Resize(filter_matrix_shape); } size_t D = x.dims().size(); for (int i = 0; i < batch_size; i++) { // batch with size (o_c, o_h, o_w) or (o_c, o_d, o_h, o_w) for // channel_first // batch with size (o_h, o_w, o_c) or (o_d, o_h, o_w, o_c) for // channel_last DenseTensor dout_batch = dout.Slice(i, i + 1).Resize(output_shape); if (data_dim == 2U) { // im2col: dy -> col matrix // from (o_c, o_h, o_w) to (o_c * k_h * k_w, i_h * i_w) for // channel_first // from (o_h, o_w, o_c) to (o_c * k_h * k_w, i_h * i_w) for // channel_last im2col(ctx, dout_batch, dilations_, strides, std::vector{ paddings_[0], paddings_[2], paddings_[1], paddings_[3]}, &col, data_layout); } else if (data_dim == 3U) { // vol2col: dy -> col_matrix // from (o_c, o_d, o_h, o_w) to (o_c * k_d * k_h * k_w, i_d * i_h * // i_w) for channel_first // from (o_d, o_h, o_w, o_c) to (i_d * i_h * i_w, o_c * k_d * k_h * // k_w) for channel_last vol2col( ctx, dout_batch, dilations_, strides, paddings_, &col, data_layout); } if (dx) { // batch with size (i_c, i_h, i_w) or (i_h, i_w, i_c) DenseTensor dx_batch = dx->Slice(i, i + 1).Resize(x_matrix_shape); // gemm: dx = filter * dy // (i_c, o_c * k_h * k_w) * (o_c * k_h * k_w, i_h * i_w) -> (i_c, i_h // * i_w) // or // (i_c, o_c * k_d * k_h * k_w) * (o_c * k_d * k_h * k_w, i_d * i_h * // i_w) -> (i_c, // i_d, i_h, i_w) // gemm: dx = dy^T * filter^T for channel_last std::vector dx_batch_vec; for (int g = 0; g < groups; g++) { // dx_slice: (i_c/g, i_h * i_w) or (i_c/g, i_d * i_h * i_w) // for channel_first // dx_slice: (i_h * i_w, i_c/g) or (i_d * i_h * i_w, i_c/g) // for channel_last // filter_slice: (i_c/g, o_c/g * k_h * k_w) DenseTensor filter_slice = filter_.Slice(g * in_step, (g + 1) * in_step); // col_matrix_slice: (o_c/g * k_h * k_w, h * w) or (o_c/g * k_d * // k_h * k_w, d * h * w) DenseTensor col_matrix_slice = col_matrix.Slice(g * col_step, (g + 1) * col_step); if (data_layout != DataLayout::kNHWC) { DenseTensor dx_slice = dx_batch.Slice(g * in_step, (g + 1) * in_step); blas.MatMul(filter_slice, false, col_matrix_slice, false, static_cast(1.0), &dx_slice, static_cast(0.0)); } else { DenseTensor dx_slice; funcs::Slice( ctx, &dx_batch, &dx_slice, g * in_step, (g + 1) * in_step, 1); blas.MatMul(col_matrix_slice, true, filter_slice, true, static_cast(1.0), &dx_slice, static_cast(0.0)); DDim dx_slice_shape; if (data_dim == 2U) { dx_slice_shape = {x_dims[1], x_dims[2], in_step}; } else { dx_slice_shape = {x_dims[1], x_dims[2], x_dims[3], in_step}; } dx_slice = dx_slice.Resize(dx_slice_shape); dx_batch_vec.push_back(dx_slice); } } if (data_layout == DataLayout::kNHWC) { concat_functor(ctx, dx_batch_vec, static_cast(D - 2), &dx_batch); } } if (dfilter) { // x batch: (i_c, i_h * i_w) or (i_h, i_w * i_c) DenseTensor in_batch = x.Slice(i, i + 1).Resize(x_matrix_shape); // gemm: d_filter = x * dy^T // (i_c, i_h * i_w) * (i_h * i_w, o_c * k_h * k_w) -> (i_c, o_c * k_h // * k_w) // or // (i_c, i_d * i_h * i_w) * (i_d * i_h * i_w, o_c * k_d * k_h * k_w) // -> (i_c, o_c * k_d * // k_h * k_w) // gemm: d_filter = x^T * dy^T for channel_last for (int g = 0; g < groups; g++) { DenseTensor dfilter_slice = dfilter_.Slice(g * in_step, (g + 1) * in_step); DenseTensor col_matrix_slice = col_matrix.Slice(g * col_step, (g + 1) * col_step); if (data_layout != DataLayout::kNHWC) { DenseTensor in_batch_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); blas.MatMul(in_batch_slice, false, col_matrix_slice, true, static_cast(1.0), &dfilter_slice, static_cast(1.0)); } else { DenseTensor in_batch_slice; funcs::Slice(ctx, &in_batch, &in_batch_slice, g * in_step, (g + 1) * in_step, 1); blas.MatMul(in_batch_slice, true, col_matrix_slice, true, static_cast(1.0), &dfilter_slice, static_cast(1.0)); } } } } } } template void Conv2dTransposeGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& filter, const DenseTensor& dout, const std::vector& strides, const std::vector& paddings, const std::vector& output_padding, const std::vector& output_size, const std::string& padding_algorithm, int groups, const std::vector& dilations, const std::string& data_format, DenseTensor* dx, DenseTensor* dfilter) { ConvTransposeGradRawKernel(ctx, x, filter, dout, strides, paddings, padding_algorithm, groups, dilations, data_format, dx, dfilter); } template void Conv3dTransposeGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& filter, const DenseTensor& dout, const std::vector& strides, const std::vector& paddings, const std::vector& output_padding, const std::vector& output_size, const std::string& padding_algorithm, int groups, const std::vector& dilations, const std::string& data_format, DenseTensor* dx, DenseTensor* dfilter) { ConvTransposeGradRawKernel(ctx, x, filter, dout, strides, paddings, padding_algorithm, groups, dilations, data_format, dx, dfilter); } } // namespace phi