# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from six.moves import reduce import numpy as np from .. import core from ..layers import utils from . import layers from ..framework import Variable, OpProtoHolder from ..layers import layer_function_generator from ..param_attr import ParamAttr from ..initializer import Normal, Constant, NumpyArrayInitializer __all__ = [ 'Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit', 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose', 'SequenceConv' ] class Conv2D(layers.Layer): def __init__(self, name_scope, num_channels, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, use_cudnn=True, act=None, param_attr=None, bias_attr=None, dtype=core.VarDesc.VarType.FP32): assert param_attr is not False, "param_attr should not be False here." super(Conv2D, self).__init__(name_scope) self._groups = groups self._stride = utils.convert_to_list(stride, 2, 'stride') self._padding = utils.convert_to_list(padding, 2, 'padding') self._dilation = utils.convert_to_list(dilation, 2, 'dilation') self._act = act if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") self._use_cudnn = use_cudnn self._num_channels = num_channels if (self._num_channels == self._groups and num_filters % self._num_channels == 0 and not self._use_cudnn): self._l_type = 'depthwise_conv2d' else: self._l_type = 'conv2d' if groups is None: num_filter_channels = num_channels else: if num_channels % groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = num_channels // groups filter_size = utils.convert_to_list(filter_size, 2, 'filter_size') filter_shape = [num_filters, int(num_filter_channels)] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[1] * num_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) self._filter_param = self.create_parameter( attr=param_attr, shape=filter_shape, dtype=self._dtype, default_initializer=_get_default_param_initializer()) if self._use_cudnn: self.create_variable( name="kCUDNNFwdAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self.create_variable( name="kCUDNNBwdDataAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self.create_variable( name="kCUDNNBwdFilterAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self._bias_param = self.create_parameter( attr=bias_attr, shape=[num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type=self._l_type, inputs={ 'Input': input, 'Filter': self._filter_param, }, outputs={"Output": pre_bias}, attrs={ 'strides': self._stride, 'paddings': self._padding, 'dilations': self._dilation, 'groups': self._groups if self._groups else 1, 'use_cudnn': self._use_cudnn, 'use_mkldnn': False, }) pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self._bias_param]}, outputs={'Out': [pre_act]}, attrs={'axis': 1}) # Currently, we don't support inplace in dygraph mode return self._helper.append_activation(pre_act, act=self._act) class Pool2D(layers.Layer): def __init__(self, name_scope, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, exclusive=True, dtype=core.VarDesc.VarType.FP32): if pool_type not in ["max", "avg"]: raise ValueError( "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if global_pooling is False and pool_size == -1: raise ValueError( "When the global_pooling is False, pool_size must be passed " "and be a valid value. Received pool_size: " + str(pool_size)) if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") super(Pool2D, self).__init__(name_scope, dtype=dtype) self._pool_type = pool_type self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') self._pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding') self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride') self._global_pooling = global_pooling self._use_cudnn = use_cudnn self._ceil_mode = ceil_mode self._exclusive = exclusive self._l_type = 'pool2d' def forward(self, input): pool_out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type=self._l_type, inputs={"X": input}, outputs={"Out": pool_out}, attrs={ "pooling_type": self._pool_type, "ksize": self._pool_size, "global_pooling": self._global_pooling, "strides": self._pool_stride, "paddings": self._pool_padding, "use_cudnn": self._use_cudnn, "ceil_mode": self._ceil_mode, "use_mkldnn": False, "exclusive": self._exclusive, }) return pool_out class FC(layers.Layer): def __init__(self, name_scope, size, param_attr=None, bias_attr=None, num_flatten_dims=1, dtype=core.VarDesc.VarType.FP32, act=None): super(FC, self).__init__(name_scope) self._size = size self._num_flatten_dims = num_flatten_dims self._dtype = dtype self._param_attr = param_attr self._bias_attr = bias_attr self._act = act def _build_once(self, input): input_shape = input.shape param_shape = [ reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) ] + [self._size] self._w = self.create_parameter( attr=self._param_attr, shape=param_shape, dtype=self._dtype, is_bias=False) if self._bias_attr: size = list([self._size]) self._b = self.create_parameter( attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True) else: self._b = None def forward(self, input): tmp = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="mul", inputs={"X": input, "Y": self._w}, outputs={"Out": tmp}, attrs={ "x_num_col_dims": self._num_flatten_dims, "y_num_col_dims": 1 }) pre_bias = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="sum", inputs={"X": [tmp]}, outputs={"Out": pre_bias}, attrs={"use_mkldnn": False}) if self._b: pre_activation = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type='elementwise_add', inputs={'X': [pre_bias], 'Y': [self._b]}, outputs={'Out': [pre_activation]}, attrs={'axis': self._num_flatten_dims}) else: pre_activation = pre_bias # Currently, we don't support inplace in dygraph mode return self._helper.append_activation(pre_activation, act=self._act) class BatchNorm(layers.Layer): def __init__(self, name_scope, num_channels, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, dtype=core.VarDesc.VarType.FP32, data_layout='NCHW', in_place=False, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=False, fuse_with_relu=False, use_global_stats=False): super(BatchNorm, self).__init__(name_scope) self._param_attr = param_attr self._param_attr = bias_attr self._act = act assert bias_attr is not False, "bias_attr should not be False in batch_norm." if dtype == core.VarDesc.VarType.FP16: self._dtype = core.VarDesc.VarType.FP32 else: self._dtype = dtype param_shape = [num_channels] # create parameter self._scale = self.create_parameter( attr=self._param_attr, shape=param_shape, dtype=self._dtype, default_initializer=Constant(1.0)) if use_global_stats and self._param_attr.learning_rate == 0.: self._scale._stop_gradient = True self._bias = self.create_parameter( attr=self._param_attr, shape=param_shape, dtype=self._dtype, is_bias=True) if use_global_stats and self._param_attr.learning_rate == 0.: self._bias._stop_gradient = True self._mean = self.create_parameter( attr=ParamAttr( name=moving_mean_name, initializer=Constant(0.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=self._dtype) self._mean._stop_gradient = True self._variance = self.create_parameter( attr=ParamAttr( name=moving_variance_name, initializer=Constant(1.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=self._dtype) self._variance._stop_gradient = True self._in_place = in_place self._momentum = momentum self._epsilon = epsilon self._is_test = is_test self._fuse_with_relu = fuse_with_relu self._use_global_stats = use_global_stats def _build_once(self, input): pass def forward(self, input): # create output # mean and mean_out share the same memory mean_out = self._mean # variance and variance out share the same memory variance_out = self._variance saved_mean = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) saved_variance = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="batch_norm", inputs={ "X": input, "Scale": self._scale, "Bias": self._bias, "Mean": self._mean, "Variance": self._variance }, outputs={ "Y": batch_norm_out, "MeanOut": mean_out, "VarianceOut": variance_out, "SavedMean": saved_mean, "SavedVariance": saved_variance }, attrs={ "momentum": self._momentum, "epsilon": self._epsilon, "is_test": self._is_test, "use_mkldnn": False, "fuse_with_relu": self._fuse_with_relu, "use_global_stats": self._use_global_stats }) # Currently, we don't support inplace in dygraph mode return self._helper.append_activation(batch_norm_out, self._act) class Embedding(layers.Layer): """ **Embedding Layer** This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in a lookup table. The result of this lookup is the embedding of each ID in the :attr:`input`. All the input variables are passed in as local variables to the LayerHelper constructor. Args: name_scope: See base class. size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size of the dictionary of embeddings and the size of each embedding vector respectively. is_sparse(bool): The flag indicating whether to use sparse update. is_distributed(bool): Whether to run lookup table from remote parameter server. padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup. Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters it in :attr:`input`. If :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is :math:`size[0] + dim`. param_attr(ParamAttr): Parameters for this layer dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc Returns: Variable: The tensor variable storing the embeddings of the \ supplied inputs. Examples: .. code-block:: python dict_size = len(dataset.ids) input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32') embedding = fluid.Embedding(size=[dict_size, 16]) fc = embedding(input) """ def __init__(self, name_scope, size, is_sparse=False, is_distributed=False, padding_idx=None, param_attr=None, dtype='float32'): super(Embedding, self).__init__(name_scope) self._size = size self._is_sparse = is_sparse self._is_distributed = is_distributed self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else ( size[0] + padding_idx) self._param_attr = param_attr self._dtype = dtype self._remote_prefetch = self._is_sparse and (not self._is_distributed) if self._remote_prefetch: assert self._is_sparse is True and self._is_distributed is False self._w = self.create_parameter( attr=self._param_attr, shape=self._size, dtype=self._dtype, is_bias=False) def forward(self, input): out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type='lookup_table', inputs={'Ids': input, 'W': self._w}, outputs={'Out': out}, attrs={ 'is_sparse': self._is_sparse, 'is_distributed': self._is_distributed, 'remote_prefetch': self._remote_prefetch, 'padding_idx': self._padding_idx }) return out class LayerNorm(layers.Layer): def __init__(self, name_scope, scale=True, shift=True, begin_norm_axis=1, epsilon=1e-05, param_attr=None, bias_attr=None, act=None): """ ${comment} The formula is as follows: .. math:: \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2} h & = f(\\frac{g}{\\sigma}(a - \\mu) + b) * :math:`a`: the vector representation of the summed inputs to the neurons in that layer. * :math:`H`: the number of hidden units in a layers * :math:`g`: the trainable scale parameter. * :math:`b`: the trainable bias parameter. Args: input(Variable): The input tensor variable. scale(bool): Whether to learn the adaptive gain :math:`g` after normalization. Default True. shift(bool): Whether to learn the adaptive bias :math:`b` after normalization. Default True. begin_norm_axis(int): The normalization will be performed along dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`. Default 1. epsilon(float): The small value added to the variance to prevent division by zero. Default 1e-05. param_attr(ParamAttr|None): The parameter attribute for the learnable gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is omitted. If :attr:`scale` is True and :attr:`param_attr` is None, a default :code:`ParamAttr` would be added as scale. The :attr:`param_attr` is initialized as 1 if it is added. Default None. bias_attr(ParamAttr|None): The parameter attribute for the learnable bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is omitted. If :attr:`shift` is True and :attr:`param_attr` is None, a default :code:`ParamAttr` would be added as bias. The :attr:`bias_attr` is initialized as 0 if it is added. Default None. act(str): Activation to be applied to the output of layer normalizaiton. Default None. Returns: ${y_comment} Examples: >>> data = fluid.layers.data(name='data', shape=[3, 32, 32], >>> dtype='float32') >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1) """ super(LayerNorm, self).__init__(name_scope) self._scale = scale self._shift = shift self._begin_norm_axis = begin_norm_axis self._epsilon = epsilon self._param_attr = param_attr self._bias_attr = bias_attr self._act = act def _build_once(self, input): self._dtype = self._helper.input_dtype(input) input_shape = input.shape param_shape = [ reduce(lambda x, y: x * y, input_shape[self._begin_norm_axis:]) ] if self._scale: self._scale_w = self.create_parameter( attr=self._param_attr, shape=param_shape, dtype=self._dtype, default_initializer=Constant(1.0)) if self._shift: assert self._bias_attr is not False self._bias_w = self.create_parameter( attr=self._bias_attr, shape=param_shape, dtype=self._dtype, is_bias=True) def forward(self, input): inputs = dict() inputs['X'] = input if self._scale: inputs['Scale'] = self._scale_w if self._shift: inputs['Bias'] = self._bias_w # create output mean_out = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) variance_out = self._helper.create_variable_for_type_inference( dtype=self._dtype, stop_gradient=True) layer_norm_out = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="layer_norm", inputs=inputs, outputs={ "Y": layer_norm_out, "Mean": mean_out, "Variance": variance_out, }, attrs={ "epsilon": self._epsilon, "begin_norm_axis": self._begin_norm_axis }) return self._helper.append_activation(layer_norm_out) class GRUUnit(layers.Layer): """ **GRU unit layer** if origin_mode is True, then the equation of a gru step is from paper `Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation `_ .. math:: u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u) r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r) m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m) h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t) if origin_mode is False, then the equation of a gru step is from paper `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling `_ .. math:: u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u) r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r) m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m) h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t) The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms of the equation above, the :math:`z_t` is split into 3 parts - :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to implement a full GRU unit operator for an input, a fully connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`. The terms :math:`u_t` and :math:`r_t` represent the update and reset gates of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is an intermediate candidate hidden output, which is denoted by :math:`m_t`. This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})` and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`. Args: input (Variable): The fc transformed input value of current step. name_scope (str): See base class. hidden (Variable): The hidden value of gru unit from previous step. size (integer): The input dimension value. param_attr(ParamAttr|None): The parameter attribute for the learnable hidden-hidden weight matrix. Note: - The shape of the weight matrix is :math:`(T \\times 3D)`, where :math:`D` is the hidden size. - All elements in the weight matrix can be divided into two parts. The first part are weights of the update gate and reset gate with shape :math:`(D \\times 2D)`, and the second part are weights for candidate hidden state with shape :math:`(D \\times D)`. If it is set to None or one attribute of ParamAttr, gru_unit will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates the bias in the update gate, reset gate and candidate calculations. If it is set to False, no bias will be applied to the update gate, reset gate and candidate calculations. If it is set to None or one attribute of ParamAttr, gru_unit will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. activation (string): The activation type for cell (actNode). Default: 'tanh' gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid' Returns: tuple: The hidden value, reset-hidden value and gate values. """ def __init__(self, name_scope, size, param_attr=None, bias_attr=None, activation='tanh', gate_activation='sigmoid', origin_mode=False, dtype='float32'): super(GRUUnit, self).__init__(name_scope) activation_dict = dict( identity=0, sigmoid=1, tanh=2, relu=3, ) activation = activation_dict[activation] gate_activation = activation_dict[gate_activation] self._dtype = dtype size = size // 3 # create weight self._weight = self.create_parameter( attr=param_attr, shape=[size, 3 * size], dtype=dtype) # create bias bias_size = [1, 3 * size] self._bias = self.create_parameter( attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True) def forward(self, input, hidden): inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight} if self._bias: inputs['Bias'] = self._bias gate = self._helper.create_variable_for_type_inference(self._dtype) reset_hidden_pre = self._helper.create_variable_for_type_inference( self._dtype) updated_hidden = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type='gru_unit', inputs=inputs, outputs={ 'Gate': gate, 'ResetHiddenPrev': reset_hidden_pre, 'Hidden': updated_hidden, }, attrs={ 'activation': 2, # tanh 'gate_activation': 1, # sigmoid }) return updated_hidden, reset_hidden_pre, gate class NCE(layers.Layer): """ ${comment} Args: input (Variable): input variable. label (Variable): label. num_total_classes (int):${num_total_classes_comment} sample_weight (Variable|None): A Variable of shape [batch_size, 1] storing a weight for each sample. The default weight for each sample is 1.0. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of nce. If it is set to None or one attribute of ParamAttr, nce will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, nce will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. num_neg_samples (int): ${num_neg_samples_comment} name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None. sampler (str): The sampler used to sample class from negtive classes. It can be 'uniform', 'log_uniform' or 'custom_dist'. default: 'uniform'. custom_dist (float[]): A float[] with size=num_total_classes. It is used when sampler is set to 'custom_dist'. custom_dist[i] is the probsbility of i-th class to be sampled. default: None. seed (int): The seed used in sampler. default: 0. is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Returns: Variable: The output nce loss. Examples: .. code-block:: python window_size = 5 words = [] for i in xrange(window_size): words.append(layers.data( name='word_{0}'.format(i), shape=[1], dtype='int64')) dict_size = 10000 label_word = int(window_size / 2) + 1 embs = [] for i in xrange(window_size): if i == label_word: continue emb = layers.embedding(input=words[i], size=[dict_size, 32], param_attr='emb.w', is_sparse=True) embs.append(emb) embs = layers.concat(input=embs, axis=1) loss = layers.nce(input=embs, label=words[label_word], num_total_classes=dict_size, param_attr='nce.w', bias_attr='nce.b') #or use custom distribution dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32")) loss = layers.nce(input=embs, label=words[label_word], num_total_classes=5, param_attr='nce.w', bias_attr='nce.b', num_neg_samples=3, sampler="custom_dist", custom_dist=dist) """ def __init__(self, name_scope, num_total_classes, param_attr=None, bias_attr=None, num_neg_samples=None, sampler="uniform", custom_dist=None, seed=0, is_sparse=False): super(NCE, self).__init__(name_scope) self._param_attr = param_attr self._bias_attr = bias_attr self._num_total_classes = num_total_classes self._inputs = dict() if sampler == "uniform": sampler = 0 elif sampler == "log_uniform": sampler = 1 elif sampler == "custom_dist": assert custom_dist is not None # assert isinstance(custom_dist, Variable) custom_dist_len = len(custom_dist) alias_probs_ = [0] * custom_dist_len alias_ = [0] * custom_dist_len bigs = [] littles = [] for i in range(custom_dist_len): normal_prob = custom_dist[i] * custom_dist_len if normal_prob - 1.0 > 0: bigs.append((i, normal_prob)) elif 1.0 - normal_prob > 0: littles.append((i, normal_prob)) else: alias_probs_[i] = normal_prob alias_[i] = -1 while len(bigs) and len(littles): big = bigs.pop(0) little = littles.pop(0) big_idx = big[0] big_prob = big[1] alias_probs_[little[0]] = little[1] alias_[little[0]] = big_idx big_left = big[1] + little[1] - 1 if big_left - 1.0 > 0: bigs.append((big_idx, big_left)) elif 1.0 - big_left > 0: littles.append((big_idx, big_left)) else: alias_probs_[big_idx] = big_left alias_[big_idx] = -1 if len(bigs): big = bigs.pop(0) alias_probs_[big[0]] = 1.0 alias_[big[0]] = -1 if len(littles): little = littles.pop(0) alias_probs_[little[0]] = 1.0 alias_[little[0]] = -1 def _init_by_numpy_array(numpy_array): ret = self.create_parameter( attr=ParamAttr(), shape=numpy_array.shape, dtype=numpy_array.dtype, default_initializer=NumpyArrayInitializer(numpy_array)) ret.stop_gradient = True return ret self._inputs['CustomDistProbs'] = _init_by_numpy_array( np.array(custom_dist).astype('float32')) self._inputs['CustomDistAlias'] = _init_by_numpy_array( np.array(alias_).astype('int32')) self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array( np.array(alias_probs_).astype('float32')) sampler = 2 else: raise Exception("Unsupported sampler type.") if num_neg_samples is None: num_neg_samples = 10 else: num_neg_samples = int(num_neg_samples) self._num_neg_samples = num_neg_samples remote_prefetch = is_sparse print( "With sparse mode, if your models has only small parameter prefetch may cause speed down" ) self._attrs = { 'num_total_classes': int(num_total_classes), 'num_neg_samples': num_neg_samples, 'seed': seed, 'sampler': sampler, 'is_sparse': is_sparse, 'remote_prefetch': remote_prefetch } def _build_once(self, input, label, sample_weight=None): assert isinstance(input, Variable) assert isinstance(label, Variable) dim = input.shape[1] num_true_class = label.shape[1] self._w = self.create_parameter( attr=self._param_attr, shape=[self._num_total_classes, dim], is_bias=False, dtype=input.dtype) if self._bias_attr: self._b = self.create_parameter( attr=self._bias_attr, shape=[self._num_total_classes, 1], is_bias=True, dtype=input.dtype) self._inputs['Bias'] = self._b self._inputs['Weight'] = self._w def forward(self, input, label, sample_weight=None): assert isinstance(input, Variable) assert isinstance(label, Variable) self._inputs['Input'] = input self._inputs['Label'] = label self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else [] cost = self._helper.create_variable_for_type_inference( dtype=input.dtype) sample_logits = self._helper.create_variable_for_type_inference( dtype=input.dtype) sample_labels = self._helper.create_variable_for_type_inference( dtype=label.dtype) self._helper.append_op( type='nce', inputs=self._inputs, outputs={ 'Cost': cost, 'SampleLogits': sample_logits, 'SampleLabels': sample_labels }, attrs=self._attrs) return cost / (self._num_neg_samples + 1) class PRelu(layers.Layer): """ Equation: .. math:: y = \max(0, x) + \\alpha * \min(0, x) Args: x (Variable): The input tensor. param_attr(ParamAttr|None): The parameter attribute for the learnable weight (alpha). mode (string): The mode for weight sharing. It supports all, channel and element. all: all elements share same weight channel:elements in a channel share same weight element:each element has a weight name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: Variable: The output tensor with the same shape as input. Examples: .. code-block:: python x = fluid.layers.data(name="x", shape=[10,10], dtype="float32") mode = 'channel' output = fluid.layers.prelu(x,mode) """ def __init__(self, name_scope, mode, param_attr=None): super(PRelu, self).__init__(name_scope) self._mode = mode self._param_attr = param_attr if self._mode not in ['all', 'channel', 'element']: raise ValueError('mode should be one of all, channel, element.') self._alpha_shape = [1] def _build_once(self, input): if self._mode == 'channel': self._alpha_shape = [1, input.shape[1], 1, 1] elif self._mode == 'element': self._alpha_shape = input.shape self._dtype = self._helper.input_dtype(input) self._alpha = self.create_parameter( attr=self._param_attr, shape=self._alpha_shape, dtype='float32', is_bias=False, default_initializer=Constant(1.0)) def forward(self, input): out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="prelu", inputs={"X": input, 'Alpha': self._alpha}, attrs={"mode": self._mode}, outputs={"Out": out}) return out class BilinearTensorProduct(layers.Layer): """ **Add Bilinear Tensor Product Layer** This layer performs bilinear tensor product on two inputs. For example: .. math:: out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1 In this formula: - :math:`x`: the first input contains M elements, shape is [batch_size, M]. - :math:`y`: the second input contains N elements, shape is [batch_size, N]. - :math:`W_{i}`: the i-th learned weight, shape is [M, N] - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size]. - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`. Args: x (Variable): 2-D input tensor with shape [batch_size, M] y (Variable): 2-D input tensor with shape [batch_size, N] size (int): The dimension of this layer. act (str, default None): Activation to be applied to the output of this layer. name (str, default None): The name of this layer. param_attr (ParamAttr, default None): The parameter attribute for the learnable w. parameters/weights of this layer. bias_attr (ParamAttr, default None): The parameter attribute for the bias of this layer. If it is set to False, no bias will be added to the output units. If it is set to None, the bias is initialized zero. Default: None. Returns: Variable: A 2-D Tensor of shape [batch_size, size]. Examples: .. code-block:: python tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000) """ def __init__(self, name_scope, size, name=None, act=None, param_attr=None, bias_attr=None): super(BilinearTensorProduct, self).__init__(name_scope) self._param_attr = param_attr self._bias_attr = bias_attr self._act = act self._size = size self._name = name self._inputs = dict() def _build_once(self, x, y): self._dtype = self._helper.input_dtype(x) param_shape = [self._size, x.shape[1], y.shape[1]] self._w = self.create_parameter( attr=self._param_attr, shape=param_shape, dtype=self._dtype, is_bias=False) if self._bias_attr: bias_size = [1, self._size] bias = self.create_parameter( attr=self._bias_attr, shape=bias_size, dtype=self._dtype, is_bias=True) self._inputs["Bias"] = bias def forward(self, x, y): self._inputs = {"X": x, "Y": y, "Weight": self._w} if self._name is not None: out = self._helper.create_variable( name=".".join([self.full_name(), self._name]), dtype=self._dtype, persistable=False) else: out = self._helper.create_variable( dtype=self._dtype, persistable=False) self._helper.append_op( type="bilinear_tensor_product", inputs=self._inputs, outputs={"Out": out}) # add activation return self._helper.append_activation(out) class Conv2DTranspose(layers.Layer): """ **Convlution2D transpose layer** The convolution2D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) are in NCHW format. Where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. Parameters(dilations, strides, paddings) are two elements. These two elements represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references `therein `_. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \\ast X + b) Where: * :math:`X`: Input value, a tensor with NCHW format. * :math:`W`: Filter value, a tensor with MCHW format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\ W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\ W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ) Args: input(Variable): The input image with [N, C, H, W] format. num_filters(int): The number of the filter. It is as same as the output image channel. output_size(int|tuple|None): The output image size. If output size is a tuple, it must contain two integers, (image_H, image_W). None if use filter_size, padding, and stride to calculate output_size. if output_size and filter_size are specified at the same time, They should follow the formula above. filter_size(int|tuple|None): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. None if use output size to calculate filter_size. padding(int|tuple): The padding size. If padding is a tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: padding = 0. stride(int|tuple): The stride size. If stride is a tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. Default: stride = 1. dilation(int|tuple): The dilation size. If dilation is a tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. Default: dilation = 1. groups(int): The groups number of the Conv2d transpose layer. Inspired by grouped convolution in Alex Krizhevsky's Deep CNN paper, in which when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups = 1. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True. act (str): Activation type, if it is set to None, activation is not appended. Default: None. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: True. Returns: Variable: The tensor variable storing the convolution transpose result. Raises: ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. Examples: .. code-block:: python data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3) """ def __init__(self, name_scope, num_filters, output_size=None, filter_size=None, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None): super(Conv2DTranspose, self).__init__(name_scope) assert param_attr is not False, "param_attr should not be False in conv2d_transpose." self._param_attr = param_attr self._bias_attr = bias_attr self._groups = groups self._num_filters = num_filters self._use_cudnn = use_cudnn self._padding = padding self._stride = stride self._dilation = dilation self._filter_size = filter_size self._output_size = output_size self._op_type = 'conv2d_transpose' def _build_once(self, input): input_channel = input.shape[1] if (input_channel == self._groups and self._num_filters == input_channel and not self._use_cudnn): self._op_type = 'depthwise_conv2d_transpose' if not isinstance(input, Variable): raise TypeError("Input of conv2d_transpose must be Variable") self._padding = utils.convert_to_list(self._padding, 2, 'padding') self._stride = utils.convert_to_list(self._stride, 2, 'stride') self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation') if not isinstance(self._use_cudnn, bool): raise ValueError("use_cudnn should be True or False") if self._filter_size is None: if self._output_size is None: raise ValueError( "output_size must be set when filter_size is None") if isinstance(self._output_size, int): self._output_size = [self._output_size, self._output_size] h_in = input.shape[2] w_in = input.shape[3] filter_size_h = (self._output_size[0] - (h_in - 1) * self._stride[0] + 2 * self._padding[0] - 1) // self._dilation[0] + 1 filter_size_w = (self._output_size[1] - (w_in - 1) * self._stride[1] + 2 * self._padding[1] - 1) // self._dilation[1] + 1 self._filter_size = [filter_size_h, filter_size_w] else: self._filter_size = utils.convert_to_list( self._output_size, 2, 'conv2d_transpose.filter_size') if self._output_size is None: self._output_size = [] elif isinstance(self._output_size, list) or isinstance( self._output_size, int): self._output_size = utils.convert_to_list(self._output_size, 2, 'output_size') else: raise ValueError("output_size should be list or int") self._padding = utils.convert_to_list(self._padding, 2, 'padding') self._groups = 1 if self._groups is None else self._groups filter_shape = [input_channel, self._num_filters // self._groups ] + self._filter_size self._img_filter = self.create_parameter( dtype=input.dtype, shape=filter_shape, attr=self._param_attr) def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=input.dtype) self._helper.append_op( type=self._op_type, inputs={'Input': [input], 'Filter': [self._img_filter]}, outputs={'Output': pre_bias}, attrs={ 'output_size': self._output_size, 'strides': self._stride, 'paddings': self._padding, 'dilations': self._dilation, 'groups': self._groups, 'use_cudnn': self._use_cudnn }) pre_act = self._helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) out = self._helper.append_activation(pre_act) return out class SequenceConv(layers.Layer): """ This function creates the op for sequence_conv, using the inputs and other convolutional configurations for the filters and stride as given in the input parameters to the function. Args: input (Variable): ${x_comment} num_filters (int): number of filters. filter_size (int): the filter size (H and W). filter_stride (int): stride of the filter. padding (bool): if True, add paddings. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, sequence_conv will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. act (str): Activation type, if it is set to None, activation is not appended. Default: None. name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None. Returns: Variable: output of sequence_conv """ def __init__(self, name_scope, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None): super(SequenceConv, self).__init__(name_scope) self._num_filters = num_filters self._filter_size = filter_size self._filter_stride = filter_stride self._padding = padding self._bias_attr = bias_attr self._param_attr = param_attr def _build_once(self, input): self._dtype = self._helper.input_dtype(input) print(self._filter_size) filter_shape = [self._filter_size * input.shape[1], self._num_filters] self._filter_param = self.create_parameter( attr=self.param_attr, shape=filter_shape, dtype=self._dtype) def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type='sequence_conv', inputs={ 'X': [input], 'Filter': [self._filter_param], }, outputs={"Out": pre_bias}, attrs={ 'contextStride': self._filter_stride, 'contextStart': -int(self._filter_size // 2), 'contextLength': self._filter_size }) pre_act = self._helper.append_bias_op(pre_bias) return self._helper.append_activation(pre_act)