# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import collections from .. import core from ..framework import Variable, default_main_program __all__ = ['save_persistables', 'load_persistables'] def save_persistables(vardict, dirname, filename=None): """ This function filters out all variables in layer.parameters from the give `layer` and then trys to load these variables from the folder `dirname` or the file `filename`. Use the `dirname` to specify the folder where persistable variables were saved. If variables were saved in separate files, set `filename` None; if all variables were saved in a single file, use `filename` to specify the file name. Args: vardict(dict of Parameters): The parameters will be saved. If it is None, nothing will be deal. dirname(str): The directory path. filename(str|None): The file which saved all variables. If variables were saved in differnet files, set it to None. Default: None Returns: Examples: .. code-block:: python ptb_model = PtbModel( hidden_size=hidden_size, vocab_size=vocab_size, num_layers=num_layers, num_steps=num_steps, init_scale=init_scale) x_data = np.arange(12).reshape(4, 3).astype('int64') y_data = np.arange(1, 13).reshape(4, 3).astype('int64') x_data = x_data.reshape((-1, num_steps, 1)) y_data = y_data.reshape((-1, 1)) init_hidden_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') init_cell_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') x = to_variable(x_data) y = to_variable(y_data) init_hidden = to_variable(init_hidden_data) init_cell = to_variable(init_cell_data) dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden, init_cell) param_path = "./my_paddle_model" fluid.dygraph.save_persistables(ptb_model.state_dict(), dirname=param_path, layer=ptb_model) """ if isinstance(vardict, collections.OrderedDict): _save_var_to_file(vardict, dirname, filename) def load_persistables(vardict, dirname, filename=None): """ This function trys to load persistable variables from the folder `dirname` or the file `filename`. Use the `dirname` to specify the folder where persistable variables were saved. If variables were saved in separate files, set `filename` None; if all variables were saved in a single file, use `filename` to specify the file name. Args: vardict(dict of Parameters): The parameters will be loaded. dirname(str): The directory path. filename(str|None): The file which saved all variables, this file path should be end with '.npz'. If variables were saved in differnet files, set it to None. Default: None Returns: dict: The parameter-dict resumed from file Examples: .. code-block:: python my_layer = layer(fluid.dygraph.Layer) param_path = "./my_paddle_model" param_dict = fluid.dygraph.load_persistables(my_layer.parameters(), param_path) param_1 = param_dict['PtbModel_0.w_1'] or: my_layer = layer(fluid.dygraph.Layer) param_path = "./my_paddle_model" filename = "model.file" param_dict = fluid.dygraph.load_persistables(my_layer.state_dict(), param_path, filename=filename) param_1 = param_dict['PtbModel_0.w_1'] """ if isinstance(vardict, collections.OrderedDict): return _load_var_from_file(vardict, dirname, filename) return {} def _save_var_to_file(stat_dict, file_dir, file_name): save_block = default_main_program().global_block() save_var_map = {} for each_var in stat_dict.items(): save_var_map[each_var.name] = each_var if file_name is None: save_block.append_op( type='save', inputs={'X': [each_var]}, outputs={}, attrs={'file_path': os.path.join(file_dir, each_var.name)}) if file_name is not None: save_var_list = [] for name in sorted(save_var_map.keys()): save_var_list.append(save_var_map[name]) save_block.append_op( type='save_combine', inputs={'X': save_var_list}, outputs={}, attrs={'file_path': os.path.join(file_dir, file_name)}) def _load_var_from_file(stat_dict, file_dir, file_name): load_block = default_main_program().global_block() load_var_map = {} for each_var in stat_dict.items(): assert isinstance(each_var, Variable) if each_var.type == core.VarDesc.VarType.RAW: continue new_var = _clone_var_in_block_(load_block, each_var) if file_name is None: load_block.append_op( type='load', inputs={}, outputs={'Out': [new_var]}, attrs={'file_path': os.path.join(file_dir, each_var.name)}) load_var_map[new_var.name] = new_var if file_name is not None: load_var_list = [] for name in sorted(load_var_map.keys()): load_var_list.append(load_var_map[name]) load_block.append_op( type='load_combine', inputs={}, outputs={"Out": load_var_list}, attrs={'file_path': os.path.join(file_dir, file_name)}) for res_var in load_var_list: load_var_map[res_var.name] = res_var return load_var_map def _clone_var_in_block_(block, var): assert isinstance(var, Variable) return block.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, lod_level=var.lod_level, persistable=True)