# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import numpy as np import unittest from paddle.fluid.framework import _test_eager_guard class TestTranspose(unittest.TestCase): # x: sparse, out: sparse def check_result(self, x_shape, dims, format): with _test_eager_guard(): mask = paddle.randint(0, 2, x_shape).astype("float32") # "+ 1" to make sure that all zero elements in "origin_x" is caused by multiplying by "mask", # or the backward checks may fail. origin_x = (paddle.rand(x_shape, dtype='float32') + 1) * mask dense_x = origin_x.detach() dense_x.stop_gradient = False dense_out = paddle.transpose(dense_x, dims) if format == "coo": sp_x = origin_x.detach().to_sparse_coo(len(x_shape)) else: sp_x = origin_x.detach().to_sparse_csr() sp_x.stop_gradient = False sp_out = paddle.sparse.transpose(sp_x, dims) np.testing.assert_allclose(sp_out.to_dense().numpy(), dense_out.numpy(), rtol=1e-05) dense_out.backward() sp_out.backward() np.testing.assert_allclose(sp_x.grad.to_dense().numpy(), (dense_x.grad * mask).numpy(), rtol=1e-05) def test_transpose_2d(self): self.check_result([2, 5], [0, 1], 'coo') self.check_result([2, 5], [0, 1], 'csr') self.check_result([2, 5], [1, 0], 'coo') self.check_result([2, 5], [1, 0], 'csr') def test_transpose_3d(self): self.check_result([6, 2, 3], [0, 1, 2], 'coo') self.check_result([6, 2, 3], [0, 1, 2], 'csr') self.check_result([6, 2, 3], [0, 2, 1], 'coo') self.check_result([6, 2, 3], [0, 2, 1], 'csr') self.check_result([6, 2, 3], [1, 0, 2], 'coo') self.check_result([6, 2, 3], [1, 0, 2], 'csr') self.check_result([6, 2, 3], [2, 0, 1], 'coo') self.check_result([6, 2, 3], [2, 0, 1], 'csr') self.check_result([6, 2, 3], [2, 1, 0], 'coo') self.check_result([6, 2, 3], [2, 1, 0], 'csr') self.check_result([6, 2, 3], [1, 2, 0], 'coo') self.check_result([6, 2, 3], [1, 2, 0], 'csr') def test_transpose_nd(self): self.check_result([8, 3, 4, 4, 5, 3], [5, 3, 4, 1, 0, 2], 'coo') # Randint now only supports access to dimension 0 to 9. self.check_result([2, 3, 4, 2, 3, 4, 2, 3, 4], [2, 3, 4, 5, 6, 7, 8, 0, 1], 'coo') if __name__ == "__main__": unittest.main()