# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.fluid.framework import _test_eager_guard import numpy as np import unittest import os import re paddle.seed(100) def get_cuda_version(): result = os.popen("nvcc --version").read() regex = r'release (\S+),' match = re.search(regex, result) if match: num = str(match.group(1)) integer, decimal = num.split('.') return int(integer) * 1000 + int(float(decimal) * 10) else: return -1 @unittest.skipIf( not paddle.is_compiled_with_cuda() or get_cuda_version() < 11000, "paddle is not compiled with CUDA and cuda version need to >= 11.0") class TestCsrMv(unittest.TestCase): # x: csr-matrix, y: dense-vec, out: dense-vec def test_mv(self): with _test_eager_guard(): paddle.set_default_dtype('float64') origin_x = paddle.rand([64, 32]) mask = paddle.randint(0, 2, [64, 32]) origin_x = origin_x * mask origin_vec = paddle.rand([32]) dense_x = origin_x.detach() dense_x.stop_gradient = False dense_vec = origin_vec.detach() dense_vec.stop_gradient = False dense_out = paddle.mv(dense_x, dense_vec) dense_out.backward() sp_x = origin_x.detach().to_sparse_csr() sp_x.stop_gradient = False sp_vec = origin_vec.detach() sp_vec.stop_gradient = False sp_out = paddle.sparse.mv(sp_x, sp_vec) sp_out.backward() np.testing.assert_allclose(sp_out.numpy(), dense_out.numpy(), rtol=1e-05) np.testing.assert_allclose(sp_x.grad.to_dense().numpy(), (dense_x.grad * mask).numpy(), rtol=1e-05) np.testing.assert_allclose(sp_vec.grad.numpy(), dense_vec.grad.numpy(), rtol=1e-05) @unittest.skipIf( not paddle.is_compiled_with_cuda() or get_cuda_version() < 11000, "paddle is not compiled with CUDA and cuda version need to >= 11.0") class TestCooMv(unittest.TestCase): # x: csr-matrix, y: dense-vec, out: dense-vec def test_mv(self): with _test_eager_guard(): paddle.set_default_dtype('float64') origin_x = paddle.rand([64, 32]) mask = paddle.randint(0, 2, [64, 32]) origin_x = origin_x * mask origin_vec = paddle.rand([32]) dense_x = origin_x.detach() dense_x.stop_gradient = False dense_vec = origin_vec.detach() dense_vec.stop_gradient = False dense_out = paddle.mv(dense_x, dense_vec) dense_out.backward() sp_x = origin_x.detach().to_sparse_coo(sparse_dim=2) sp_x.stop_gradient = False sp_vec = origin_vec.detach() sp_vec.stop_gradient = False sp_out = paddle.sparse.mv(sp_x, sp_vec) sp_out.backward() np.testing.assert_allclose(sp_out.numpy(), dense_out.numpy(), rtol=1e-05) np.testing.assert_allclose(sp_x.grad.to_dense().numpy(), (dense_x.grad * mask).numpy(), rtol=1e-05) np.testing.assert_allclose(sp_vec.grad.numpy(), dense_vec.grad.numpy(), rtol=1e-05) if __name__ == "__main__": unittest.main()