# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.fluid import core from paddle.fluid.framework import _test_eager_guard import paddle.sparse as sparse class TestSparseConv(unittest.TestCase): def test_conv3d(self): with _test_eager_guard(): kernel = [[[[[1], [1], [1]], [[1], [1], [1]], [[1], [1], [1]]]]] dense_kernel = paddle.to_tensor(kernel, dtype='float32', stop_gradient=False) dense_kernel = paddle.reshape(dense_kernel, [1, 3, 3, 1, 1]) paddings = [0, 0, 0] strides = [1, 1, 1] dilations = [1, 1, 1] bias = [1] indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]] values = [1, 2, 3, 4] indices = paddle.to_tensor(indices, dtype='int32') values = paddle.to_tensor(values, dtype='float32') dense_shape = [1, 1, 3, 4, 1] correct_out_values = [[5], [11]] sparse_input = core.eager.sparse_coo_tensor(indices, values, dense_shape, False) out = paddle.sparse.nn.functional.conv3d(sparse_input, dense_kernel, bias=paddle.to_tensor( bias, dtype='float32'), stride=strides, padding=paddings, dilation=dilations, groups=1, data_format="NDHWC") out.backward(out) out = paddle.sparse.coalesce(out) assert np.array_equal(correct_out_values, out.values().numpy()) def test_subm_conv3d(self): with _test_eager_guard(): indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]] values = [[1], [2], [3], [4]] indices = paddle.to_tensor(indices, dtype='int32') values = paddle.to_tensor(values, dtype='float32') dense_shape = [1, 1, 3, 4, 1] sparse_x = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape, stop_gradient=True) weight = paddle.randn((1, 3, 3, 1, 1), dtype='float32') y = paddle.sparse.nn.functional.subm_conv3d(sparse_x, weight, key='subm_conv') assert np.array_equal(sparse_x.indices().numpy(), y.indices().numpy()) def test_Conv3D(self): with _test_eager_guard(): #(4, non_zero_num), 4-D:(N, D, H, W) indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]] #(non_zero_num, C) values = [[1], [2], [3], [4]] indices = paddle.to_tensor(indices, dtype='int32') values = paddle.to_tensor(values, dtype='float32') dense_shape = [1, 1, 3, 4, 1] correct_out_values = [[4], [10]] sparse_input = paddle.sparse.sparse_coo_tensor( indices, values, dense_shape, False) sparse_conv3d = paddle.sparse.nn.Conv3D(1, 1, (1, 3, 3), data_format='NDHWC') sparse_out = sparse_conv3d(sparse_input) #test errors with self.assertRaises(ValueError): #Currently, only support data_format='NDHWC' conv3d = paddle.sparse.nn.SubmConv3D(1, 1, (1, 3, 3), data_format='NCDHW', key='subm_conv') def test_SubmConv3D(self): with _test_eager_guard(): indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]] values = [[1], [2], [3], [4]] indices = paddle.to_tensor(indices, dtype='int32') values = paddle.to_tensor(values, dtype='float32') dense_shape = [1, 1, 3, 4, 1] correct_out_values = [[4], [10]] sparse_input = paddle.sparse.sparse_coo_tensor( indices, values, dense_shape, False) subm_conv3d = paddle.sparse.nn.SubmConv3D(1, 1, (1, 3, 3), data_format='NDHWC', key='subm_conv') # test extra_repr print(subm_conv3d.extra_repr()) sparse_out = subm_conv3d(sparse_input) # the output shape of subm_conv is same as input shape assert np.array_equal(indices, sparse_out.indices().numpy()) #test errors with self.assertRaises(ValueError): #Currently, only support data_format='NDHWC' conv3d = paddle.sparse.nn.SubmConv3D(1, 1, (1, 3, 3), data_format='NCDHW', key='subm_conv') def test_Conv3D_bias(self): with _test_eager_guard(): paddle.seed(0) shape = [1, 4, 4, 4, 3] x = paddle.randn(shape) sp_x = x.to_sparse_coo(4) conv3d = paddle.nn.Conv3D(3, 2, 3, data_format='NDHWC') sp_conv3d = paddle.sparse.nn.Conv3D(3, 2, 3, data_format='NDHWC') sp_conv3d.weight.set_value( paddle.to_tensor(conv3d.weight.numpy().transpose(2, 3, 4, 1, 0))) sp_conv3d.bias.set_value(paddle.to_tensor(conv3d.bias.numpy())) x.stop_gradient = False out = conv3d(x) loss = out.mean() loss.backward() sp_x.stop_gradient = False sp_out = sp_conv3d(sp_x) dense_out = sp_out.to_dense() sp_loss = dense_out.mean() sp_loss.backward() assert np.allclose(out.numpy(), dense_out.numpy(), atol=1e-3, rtol=1e-3) assert np.allclose(conv3d.weight.grad.numpy().transpose( 2, 3, 4, 1, 0), sp_conv3d.weight.grad.numpy(), atol=1e-3, rtol=1e-3) assert np.allclose(conv3d.bias.grad.numpy(), sp_conv3d.bias.grad.numpy(), atol=1e-5, rtol=1e-5) class TestStatic(unittest.TestCase): def test(self): paddle.enable_static() indices = paddle.static.data(name='indices', shape=[4, 4], dtype='int32') values = paddle.static.data(name='values', shape=[4, 1], dtype='float32') dense_shape = [1, 1, 3, 4, 1] sp_x = sparse.sparse_coo_tensor(indices, values, dense_shape) weight_shape = [1, 3, 3, 1, 1] weight = paddle.static.data(name='weight', shape=weight_shape, dtype='float32') bias_shape = [1] bias = paddle.static.data(name='bias', shape=bias_shape, dtype='float32') out = sparse.nn.functional.conv3d(sp_x, weight, bias, stride=1, padding=0, dilation=1, groups=1, data_format="NDHWC") sp_out = sparse.nn.functional.relu(out) out_indices = sp_out.indices() out_values = sp_out.values() out = sp_out.to_dense() exe = paddle.static.Executor() indices_data = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]] values_data = [[1.0], [2.0], [3.0], [4.0]] weight_data = np.array([[[[[1], [1], [1]], [[1], [1], [1]], [[1], [1], [1]]]]]).astype('float32') weight_data = weight_data.reshape(weight_shape) bias_data = np.array([1]).astype('float32') fetch = exe.run(feed={ 'indices': indices_data, 'values': values_data, 'weight': weight_data, 'bias': bias_data }, fetch_list=[out, out_indices, out_values], return_numpy=True) correct_out = np.array([[[[[5.0], [11.0]]]]]).astype('float64') correct_out_values = [[5.0], [11.0]] assert np.array_equal(correct_out, fetch[0]) assert np.array_equal(correct_out_values, fetch[2]) assert out_indices.dtype == paddle.int32 paddle.disable_static() if __name__ == "__main__": unittest.main()