// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/layer.h" #include #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/string/printf.h" namespace paddle { namespace imperative { using framework::Variable; void AddTo(Variable* src, Variable* dst) { framework::LoDTensor* dst_tensor = dst->GetMutable(); framework::LoDTensor* src_tensor = src->GetMutable(); PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(), "%lld vs %lld", dst_tensor->numel(), src_tensor->numel()); float* dst_data = dst_tensor->mutable_data(platform::CPUPlace()); const float* src_data = src_tensor->data(); for (size_t i = 0; i < src_tensor->numel(); ++i) { dst_data[i] += src_data[i]; } } class Autograd { public: explicit Autograd(framework::Scope* scope) : scope_(scope) {} void RunBackward(VarBase* var) { PADDLE_ENFORCE(var->pre_op_->op_desc_); // TODO(panyx0718): Only create for vars that "require_grad" (*var->pre_op_->output_vars_)[var->pre_op_out_idx_]->grads_ = var->grads_; std::deque ready; ready.push_back(var->pre_op_); std::map dep_counts = ComputeDepCounts(var->pre_op_); while (!ready.empty()) { OpBase* ready_op = ready.front(); ready.pop_front(); std::vector input_grads = ready_op->ApplyGrad(scope_); for (size_t i = 0; i < input_grads.size(); ++i) { if (!input_grads[i]) continue; OpBase* pre_op = ready_op->pre_ops_->at(i); if (!pre_op) continue; dep_counts[pre_op] -= 1; PADDLE_ENFORCE(dep_counts[pre_op] >= 0); bool pre_op_ready = dep_counts[pre_op] == 0; if (pre_op_ready) { ready.push_back(pre_op); } } } } private: std::map ComputeDepCounts(OpBase* op) { std::map ret; std::deque queue; queue.push_back(op); std::unordered_set visited; visited.insert(op); while (!queue.empty()) { OpBase* candidate = queue.front(); queue.pop_front(); for (OpBase* pre_op : *(candidate->pre_ops_)) { if (!pre_op) continue; if (visited.find(pre_op) == visited.end()) { visited.insert(pre_op); queue.push_back(pre_op); } ret[pre_op] += 1; } } return ret; } framework::Scope* scope_; }; framework::Variable* CreateVariable(const std::string& name, const framework::DDim& dim, float val, framework::Scope* scope, bool random_name = true) { std::string varname = name; if (random_name) { std::mt19937 rng; rng.seed(std::random_device()()); std::uniform_int_distribution dist6( 1, std::numeric_limits::max()); int id = dist6(rng); varname = string::Sprintf("%s@%d", varname, id); } LOG(ERROR) << "creating var " << varname; VLOG(3) << "creating var " << varname; framework::Variable* var = scope->Var(varname); framework::LoDTensor* tensor = var->GetMutable(); float* data = tensor->mutable_data(dim, platform::CPUPlace()); std::fill(data, data + tensor->numel(), val); return var; } framework::LoDTensor& VarBase::Grad() { VLOG(3) << "get var grad " << var_desc_->Name(); return *grads_->GetMutable(); } void VarBase::ApplyGrad(framework::Scope* scope, Variable* grad) { PADDLE_ENFORCE(grad->IsInitialized(), "grad %s must be initialized", var_desc_->Name()); PADDLE_ENFORCE(grad->Get().IsInitialized(), "variable %s has NO gradient, please set stop_gradient to it", var_desc_->Name()); VLOG(3) << "apply var grad " << var_desc_->Name() << " " << grad->Get().data()[0]; if (!grads_) { grads_ = CreateVariable(string::Sprintf("%s@IGrad", var_desc_->Name()), var_->Get().dims(), 0.0, scope); } AddTo(grad, grads_); VLOG(3) << "grad_ after apply var grad " << var_desc_->Name() << " " << grads_->Get().data()[0]; } std::vector OpBase::ApplyGrad(framework::Scope* scope) { VLOG(3) << "op grad " << grad_op_desc_->Type(); if (!grad_to_var_) { return {}; } for (const std::string& grad_invar : grad_op_desc_->InputArgumentNames()) { if (grad_to_var_->find(grad_invar) == grad_to_var_->end()) { // grad op inputs can be forward inputs, so not in grad_to_var. continue; } VLOG(3) << "op grad input var " << grad_invar; framework::VarDesc& grad_invar_desc = block_->FindRecursiveOrCreateVar(grad_invar); framework::Variable* var = scope->Var(grad_invar); const std::string& invar = grad_to_var_->at(grad_invar); for (VarBase* varbase : *output_vars_) { // Use the accumulated grads_ by sharing the input with grads_. if (varbase->var_desc_->Name() == invar) { var->GetMutable()->ShareDataWith( varbase->grads_->Get()); break; } } grad_invar_desc.SetShape( framework::vectorize(var->Get().dims())); VLOG(3) << "set op grad var desc's shape size " << framework::vectorize(var->Get().dims()).size(); } LOG(ERROR) << "grad_op_desc_" << grad_op_desc_->Proto()->DebugString(); for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) { VLOG(3) << "op grad output var " << outvar; block_->FindRecursiveOrCreateVar(outvar); framework::Variable* var = scope->Var(outvar); if (!var->IsInitialized()) { VLOG(3) << "init op grad output var " << outvar; framework::VarDesc* var_desc = block_->FindVar(outvar); if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) { var->GetMutable(); // framework::Tensor* tensor = var->GetMutable(); // tensor->mutable_data(platform::CPUPlace()); } else { LOG(ERROR) << "tracer doesn't support yet"; } } VLOG(3) << "op grad output var " << outvar << " is inited"; } grad_op_desc_->InferShape(*block_); grad_op_desc_->InferVarType(block_); std::unique_ptr opbase = framework::OpRegistry::CreateOp(*grad_op_desc_); opbase->Run(*scope, platform::CPUPlace()); // `ret` matches exactly with `input_vars_` of forward op. std::vector ret; for (size_t i = 0; i < input_vars_->size(); ++i) { bool found = false; VarBase* origin_var = (*input_vars_)[i]; for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) { Variable* var = scope->FindVar(outvar); std::string orig_var_name = grad_to_var_->at(outvar); if (origin_var->var_desc_->Name() != orig_var_name || origin_var->stop_gradient_) { continue; } VLOG(3) << "apply grad " << outvar << " with origin " << orig_var_name; origin_var->ApplyGrad(scope, var); found = true; ret.push_back(var); // TODO(panyx0718): There might be another outvar with the same name. // In that case, it doesn't matter the first one or the second one is // used. break; } if (!found) { ret.push_back(nullptr); } } return ret; } void VarBase::RunBackward(framework::Scope* scope) { grads_ = CreateVariable(framework::GradVarName(var_desc_->Name()), var_->Get().dims(), 1.0, scope, false); if (!pre_op_) return; Autograd(scope).RunBackward(this); } } // namespace imperative } // namespace paddle