# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid from paddle.fluid.io import multiprocess_reader import unittest import numpy as np import six import sys class ReaderException(Exception): pass class TestMultiprocessReaderException(unittest.TestCase): def setUp(self): self.use_pipe = False self.raise_exception = False def places(self): if fluid.is_compiled_with_cuda(): return [fluid.CPUPlace(), fluid.CUDAPlace(0)] else: return [fluid.CPUPlace()] def main_impl(self, place, iterable, use_legacy_py_reader): sample_num = 40 batch_size = 4 def fake_reader(): def __impl__(): for _ in range(sample_num): if not self.raise_exception: yield list( np.random.uniform( low=-1, high=1, size=[10])), else: raise ValueError() return __impl__ with fluid.program_guard(fluid.Program(), fluid.Program()): if not use_legacy_py_reader: image = fluid.data( name='image', dtype='float32', shape=[None, 10]) reader = fluid.io.PyReader( feed_list=[image], capacity=2, iterable=iterable) else: reader = fluid.layers.py_reader( capacity=2, shapes=[[-1, 10], ], dtypes=['float32', ]) image = fluid.layers.read_file(reader) image_p_1 = image + 1 decorated_reader = multiprocess_reader( [fake_reader(), fake_reader()], use_pipe=self.use_pipe) if use_legacy_py_reader: reader.decorate_paddle_reader( fluid.io.batch( decorated_reader, batch_size=batch_size)) else: if isinstance(place, fluid.CUDAPlace): reader.decorate_sample_generator( decorated_reader, batch_size=batch_size, places=fluid.cuda_places(0)) else: reader.decorate_sample_generator( decorated_reader, batch_size=batch_size, places=fluid.cpu_places()) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) batch_num = int(sample_num * 2 / batch_size) if iterable: for _ in range(3): num = 0 try: for data in reader(): exe.run(feed=data, fetch_list=[image_p_1]) num += 1 self.assertEquals(num, batch_num) except fluid.core.EnforceNotMet as ex: self.assertEquals(num, 0) raise ReaderException() else: for _ in range(3): num = 0 reader.start() try: while True: exe.run(fetch_list=[image_p_1]) num += 1 except fluid.core.EOFException: reader.reset() self.assertFalse(self.raise_exception) self.assertEquals(num, batch_num) except fluid.core.EnforceNotMet as ex: self.assertTrue(self.raise_exception) self.assertEquals(num, 0) raise ReaderException() def test_main(self): for p in self.places(): for iterable in [False, True]: use_legacy_py_reader_range = [False ] if iterable else [False, True] for use_legacy_py_reader in use_legacy_py_reader_range: try: with fluid.scope_guard(fluid.Scope()): self.main_impl(p, iterable, use_legacy_py_reader) self.assertTrue(not self.raise_exception) except ReaderException: self.assertTrue(self.raise_exception) class TestCase1(TestMultiprocessReaderException): def setUp(self): self.use_pipe = False self.raise_exception = True class TestCase2(TestMultiprocessReaderException): def setUp(self): self.use_pipe = True self.raise_exception = False class TestCase3(TestMultiprocessReaderException): def setUp(self): self.use_pipe = True self.raise_exception = True if __name__ == '__main__': unittest.main()