// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/distributed/ps/table/common_graph_table.h" #include #include #include #include #include #include "gflags/gflags.h" #include "paddle/fluid/distributed/common/utils.h" #include "paddle/fluid/distributed/ps/table/graph/graph_node.h" #include "paddle/fluid/framework/fleet/fleet_wrapper.h" #include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_wrapper.h" #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/io/fs.h" #include "paddle/fluid/platform/timer.h" #include "paddle/fluid/string/printf.h" #include "paddle/fluid/string/string_helper.h" DECLARE_bool(graph_load_in_parallel); DECLARE_bool(graph_get_neighbor_id); DECLARE_int32(gpugraph_storage_mode); DECLARE_uint64(gpugraph_slot_feasign_max_num); namespace paddle { namespace distributed { #ifdef PADDLE_WITH_HETERPS int32_t GraphTable::Load_to_ssd(const std::string &path, const std::string ¶m) { bool load_edge = (param[0] == 'e'); bool load_node = (param[0] == 'n'); if (load_edge) { bool reverse_edge = (param[1] == '<'); std::string edge_type = param.substr(2); return this->load_edges_to_ssd(path, reverse_edge, edge_type); } if (load_node) { std::string node_type = param.substr(1); return this->load_nodes(path, node_type); } return 0; } paddle::framework::GpuPsCommGraphFea GraphTable::make_gpu_ps_graph_fea( int gpu_id, std::vector &node_ids, int slot_num) { size_t shard_num = 64; std::vector> bags(shard_num); std::vector feature_array[shard_num]; std::vector slot_id_array[shard_num]; std::vector node_id_array[shard_num]; std::vector node_fea_info_array[shard_num]; for (size_t i = 0; i < shard_num; i++) { auto predsize = node_ids.size() / shard_num; bags[i].reserve(predsize * 1.2); feature_array[i].reserve(predsize * 1.2 * slot_num); slot_id_array[i].reserve(predsize * 1.2 * slot_num); node_id_array[i].reserve(predsize * 1.2); node_fea_info_array[i].reserve(predsize * 1.2); } for (auto x : node_ids) { int location = x % shard_num; bags[location].push_back(x); } std::vector> tasks; if (slot_feature_num_map_.size() == 0) { slot_feature_num_map_.resize(slot_num); for (int k = 0; k < slot_num; ++k) { slot_feature_num_map_[k] = 0; } } for (size_t i = 0; i < bags.size(); i++) { if (bags[i].size() > 0) { tasks.push_back(_cpu_worker_pool[gpu_id]->enqueue([&, i, this]() -> int { uint64_t node_id; paddle::framework::GpuPsFeaInfo x; std::vector feature_ids; for (size_t j = 0; j < bags[i].size(); j++) { // TODO(danleifeng): use FEATURE_TABLE instead Node *v = find_node(1, bags[i][j]); node_id = bags[i][j]; if (v == NULL) { x.feature_size = 0; x.feature_offset = 0; node_fea_info_array[i].push_back(x); } else { // x <- v x.feature_offset = feature_array[i].size(); int total_feature_size = 0; for (int k = 0; k < slot_num; ++k) { auto feature_ids_size = v->get_feature_ids(k, feature_array[i], slot_id_array[i]); if (slot_feature_num_map_[k] < feature_ids_size) { slot_feature_num_map_[k] = feature_ids_size; } total_feature_size += feature_ids_size; } x.feature_size = total_feature_size; node_fea_info_array[i].push_back(x); } node_id_array[i].push_back(node_id); } return 0; })); } } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); std::stringstream ss; for (int k = 0; k < slot_num; ++k) { ss << slot_feature_num_map_[k] << " "; } VLOG(0) << "slot_feature_num_map: " << ss.str(); tasks.clear(); paddle::framework::GpuPsCommGraphFea res; uint64_t tot_len = 0; for (size_t i = 0; i < shard_num; i++) { tot_len += feature_array[i].size(); } VLOG(0) << "Loaded feature table on cpu, feature_list_size[" << tot_len << "] node_ids_size[" << node_ids.size() << "]"; res.init_on_cpu(tot_len, (unsigned int)node_ids.size(), slot_num); unsigned int offset = 0, ind = 0; for (size_t i = 0; i < shard_num; i++) { tasks.push_back( _cpu_worker_pool[gpu_id]->enqueue([&, i, ind, offset, this]() -> int { auto start = ind; for (size_t j = 0; j < node_id_array[i].size(); j++) { res.node_list[start] = node_id_array[i][j]; res.fea_info_list[start] = node_fea_info_array[i][j]; res.fea_info_list[start++].feature_offset += offset; } for (size_t j = 0; j < feature_array[i].size(); j++) { res.feature_list[offset + j] = feature_array[i][j]; res.slot_id_list[offset + j] = slot_id_array[i][j]; } return 0; })); offset += feature_array[i].size(); ind += node_id_array[i].size(); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); return res; } paddle::framework::GpuPsCommGraph GraphTable::make_gpu_ps_graph( int idx, const std::vector &ids) { std::vector> bags(task_pool_size_); for (int i = 0; i < task_pool_size_; i++) { auto predsize = ids.size() / task_pool_size_; bags[i].reserve(predsize * 1.2); } for (auto x : ids) { int location = x % shard_num % task_pool_size_; bags[location].push_back(x); } std::vector> tasks; std::vector node_array[task_pool_size_]; // node id list std::vector info_array[task_pool_size_]; std::vector edge_array[task_pool_size_]; // edge id list for (size_t i = 0; i < bags.size(); i++) { if (bags[i].size() > 0) { tasks.push_back(_shards_task_pool[i]->enqueue([&, i, this]() -> int { node_array[i].resize(bags[i].size()); info_array[i].resize(bags[i].size()); edge_array[i].reserve(bags[i].size()); for (size_t j = 0; j < bags[i].size(); j++) { auto node_id = bags[i][j]; node_array[i][j] = node_id; Node *v = find_node(0, idx, node_id); if (v != nullptr) { info_array[i][j].neighbor_offset = edge_array[i].size(); info_array[i][j].neighbor_size = v->get_neighbor_size(); for (size_t k = 0; k < v->get_neighbor_size(); k++) { edge_array[i].push_back(v->get_neighbor_id(k)); } } else { info_array[i][j].neighbor_offset = 0; info_array[i][j].neighbor_size = 0; } } return 0; })); } } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); int64_t tot_len = 0; for (int i = 0; i < task_pool_size_; i++) { tot_len += edge_array[i].size(); } paddle::framework::GpuPsCommGraph res; res.init_on_cpu(tot_len, ids.size()); int64_t offset = 0, ind = 0; for (int i = 0; i < task_pool_size_; i++) { for (size_t j = 0; j < node_array[i].size(); j++) { res.node_list[ind] = node_array[i][j]; res.node_info_list[ind] = info_array[i][j]; res.node_info_list[ind++].neighbor_offset += offset; } for (size_t j = 0; j < edge_array[i].size(); j++) { res.neighbor_list[offset + j] = edge_array[i][j]; } offset += edge_array[i].size(); } return res; } int32_t GraphTable::add_node_to_ssd( int type_id, int idx, uint64_t src_id, char *data, int len) { if (_db != NULL) { char ch[sizeof(int) * 2 + sizeof(uint64_t)]; memcpy(ch, &type_id, sizeof(int)); memcpy(ch + sizeof(int), &idx, sizeof(int)); memcpy(ch + sizeof(int) * 2, &src_id, sizeof(uint64_t)); std::string str; if (_db->get(src_id % shard_num % task_pool_size_, ch, sizeof(int) * 2 + sizeof(uint64_t), str) == 0) { const uint64_t *stored_data = reinterpret_cast(str.c_str()); // NOLINT int n = str.size() / sizeof(uint64_t); char *new_data = new char[n * sizeof(uint64_t) + len]; memcpy(new_data, stored_data, n * sizeof(uint64_t)); memcpy(new_data + n * sizeof(uint64_t), data, len); _db->put(src_id % shard_num % task_pool_size_, ch, sizeof(int) * 2 + sizeof(uint64_t), reinterpret_cast(new_data), n * sizeof(uint64_t) + len); delete[] new_data; } else { _db->put(src_id % shard_num % task_pool_size_, ch, sizeof(int) * 2 + sizeof(uint64_t), reinterpret_cast(data), len); } } return 0; } char *GraphTable::random_sample_neighbor_from_ssd( int idx, uint64_t id, int sample_size, const std::shared_ptr rng, int &actual_size) { if (_db == NULL) { actual_size = 0; return NULL; } std::string str; VLOG(2) << "sample ssd for key " << id; char ch[sizeof(int) * 2 + sizeof(uint64_t)]; memset(ch, 0, sizeof(int)); memcpy(ch + sizeof(int), &idx, sizeof(int)); memcpy(ch + sizeof(int) * 2, &id, sizeof(uint64_t)); if (_db->get(id % shard_num % task_pool_size_, ch, sizeof(int) * 2 + sizeof(uint64_t), str) == 0) { const uint64_t *data = reinterpret_cast(str.c_str()); int n = str.size() / sizeof(uint64_t); std::unordered_map m; // std::vector res; int sm_size = std::min(n, sample_size); actual_size = sm_size * Node::id_size; char *buff = new char[actual_size]; for (int i = 0; i < sm_size; i++) { std::uniform_int_distribution distrib(0, n - i - 1); int t = distrib(*rng); // int t = rand() % (n-i); int pos = 0; auto iter = m.find(t); if (iter != m.end()) { pos = iter->second; } else { pos = t; } auto iter2 = m.find(n - i - 1); int key2 = iter2 == m.end() ? n - i - 1 : iter2->second; m[t] = key2; m.erase(n - i - 1); memcpy(buff + i * Node::id_size, &data[pos], Node::id_size); // res.push_back(data[pos]); } for (int i = 0; i < actual_size; i += 8) { VLOG(2) << "sampled an neighbor " << *reinterpret_cast(&buff[i]); } return buff; } actual_size = 0; return NULL; } int64_t GraphTable::load_graph_to_memory_from_ssd(int idx, std::vector &ids) { std::vector> bags(task_pool_size_); for (auto x : ids) { int location = x % shard_num % task_pool_size_; bags[location].push_back(x); } std::vector> tasks; std::vector count(task_pool_size_, 0); for (size_t i = 0; i < bags.size(); i++) { if (bags[i].size() > 0) { tasks.push_back(_shards_task_pool[i]->enqueue([&, i, idx, this]() -> int { char ch[sizeof(int) * 2 + sizeof(uint64_t)]; memset(ch, 0, sizeof(int)); memcpy(ch + sizeof(int), &idx, sizeof(int)); for (size_t k = 0; k < bags[i].size(); k++) { auto v = bags[i][k]; memcpy(ch + sizeof(int) * 2, &v, sizeof(uint64_t)); std::string str; if (_db->get(i, ch, sizeof(int) * 2 + sizeof(uint64_t), str) == 0) { count[i] += (int64_t)str.size(); for (size_t j = 0; j < str.size(); j += sizeof(uint64_t)) { uint64_t id = *reinterpret_cast(str.c_str() + j); add_comm_edge(idx, v, id); } } } return 0; })); } } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); int64_t tot = 0; for (auto x : count) tot += x; return tot; } void GraphTable::make_partitions(int idx, int64_t byte_size, int device_len) { VLOG(2) << "start to make graph partitions , byte_size = " << byte_size << " total memory cost = " << total_memory_cost; if (total_memory_cost == 0) { VLOG(0) << "no edges are detected,make partitions exits"; return; } auto &weight_map = node_weight[0][idx]; const double a = 2.0, y = 1.25, weight_param = 1.0; int64_t gb_size_by_discount = byte_size * 0.8 * device_len; if (gb_size_by_discount <= 0) gb_size_by_discount = 1; int part_len = total_memory_cost / gb_size_by_discount; if (part_len == 0) part_len = 1; VLOG(2) << "part_len = " << part_len << " byte size = " << gb_size_by_discount; partitions[idx].clear(); partitions[idx].resize(part_len); std::vector weight_cost(part_len, 0); std::vector memory_remaining(part_len, gb_size_by_discount); std::vector score(part_len, 0); std::unordered_map id_map; std::vector iters; for (int i = 0; i < task_pool_size_; i++) { iters.push_back(_db->get_iterator(i)); iters[i]->SeekToFirst(); } size_t next = 0; while (iters.size()) { if (next >= iters.size()) { next = 0; } if (!iters[next]->Valid()) { iters.erase(iters.begin() + next); continue; } std::string key = iters[next]->key().ToString(); int type_idx = *(reinterpret_cast(key.c_str())); int temp_idx = *(reinterpret_cast(key.c_str() + sizeof(int))); if (type_idx != 0 || temp_idx != idx) { iters[next]->Next(); next++; continue; } std::string value = iters[next]->value().ToString(); std::uint64_t i_key = *reinterpret_cast(key.c_str() + sizeof(int) * 2); for (int i = 0; i < part_len; i++) { if (memory_remaining[i] < (int64_t)value.size()) { score[i] = -100000.0; } else { score[i] = 0; } } for (size_t j = 0; j < value.size(); j += sizeof(uint64_t)) { uint64_t v = *(reinterpret_cast(value.c_str() + j)); int index = -1; if (id_map.find(v) != id_map.end()) { index = id_map[v]; score[index]++; } } double base, weight_base = 0; double w = 0; bool has_weight = false; if (weight_map.find(i_key) != weight_map.end()) { w = weight_map[i_key]; has_weight = true; } int index = 0; for (int i = 0; i < part_len; i++) { base = gb_size_by_discount - memory_remaining[i] + value.size(); if (has_weight) { weight_base = weight_cost[i] + w * weight_param; } else { weight_base = 0; } score[i] -= a * y * std::pow(1.0 * base, y - 1) + weight_base; if (score[i] > score[index]) index = i; VLOG(2) << "score" << i << " = " << score[i] << " memory left " << memory_remaining[i]; } id_map[i_key] = index; partitions[idx][index].push_back(i_key); memory_remaining[index] -= (int64_t)value.size(); if (has_weight) weight_cost[index] += w; iters[next]->Next(); next++; } for (int i = 0; i < part_len; i++) { if (partitions[idx][i].size() == 0) { partitions[idx].erase(partitions[idx].begin() + i); i--; part_len--; continue; } VLOG(2) << " partition " << i << " size = " << partitions[idx][i].size(); for (auto x : partitions[idx][i]) { VLOG(2) << "find a id " << x; } } next_partition = 0; } void GraphTable::export_partition_files(int idx, std::string file_path) { int part_len = partitions[idx].size(); if (part_len == 0) return; if (file_path == "") file_path = "."; if (file_path[file_path.size() - 1] != '/') { file_path += "/"; } std::vector> tasks; for (int i = 0; i < part_len; i++) { tasks.push_back(_shards_task_pool[i % task_pool_size_]->enqueue( [&, i, idx, this]() -> int { std::string output_path = file_path + "partition_" + std::to_string(i); std::ofstream ofs(output_path); if (ofs.fail()) { VLOG(0) << "creating " << output_path << " failed"; return 0; } for (auto x : partitions[idx][i]) { auto str = std::to_string(x); ofs.write(str.c_str(), str.size()); ofs.write("\n", 1); } ofs.close(); return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); } void GraphTable::clear_graph(int idx) { for (auto p : edge_shards[idx]) { p->clear(); delete p; } edge_shards[idx].clear(); for (size_t i = 0; i < shard_num_per_server; i++) { edge_shards[idx].push_back(new GraphShard()); } } void GraphTable::release_graph() { // Before releasing graph, prepare for sampling ids and embedding keys. build_graph_type_keys(); if (FLAGS_gpugraph_storage_mode == paddle::framework::GpuGraphStorageMode::WHOLE_HBM) { build_graph_total_keys(); } // clear graph if (FLAGS_gpugraph_storage_mode == paddle::framework::GpuGraphStorageMode:: MEM_EMB_FEATURE_AND_GPU_GRAPH || FLAGS_gpugraph_storage_mode == paddle::framework::GpuGraphStorageMode:: SSD_EMB_AND_MEM_FEATURE_GPU_GRAPH) { clear_edge_shard(); } else { clear_graph(); } } void GraphTable::release_graph_edge() { if (FLAGS_gpugraph_storage_mode == paddle::framework::GpuGraphStorageMode::WHOLE_HBM) { build_graph_total_keys(); } clear_edge_shard(); } void GraphTable::release_graph_node() { build_graph_type_keys(); if (FLAGS_gpugraph_storage_mode != paddle::framework::GpuGraphStorageMode:: MEM_EMB_FEATURE_AND_GPU_GRAPH && FLAGS_gpugraph_storage_mode != paddle::framework::GpuGraphStorageMode:: SSD_EMB_AND_MEM_FEATURE_GPU_GRAPH) { clear_feature_shard(); } else { merge_feature_shard(); feature_shrink_to_fit(); } } void GraphTable::clear_edge_shard() { VLOG(0) << "begin clear edge shard"; std::vector> tasks; for (auto &type_shards : edge_shards) { for (auto &shard : type_shards) { tasks.push_back( load_node_edge_task_pool->enqueue([&shard, this]() -> int { delete shard; return 0; })); } } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); for (auto &shards : edge_shards) { shards.clear(); for (size_t i = 0; i < shard_num_per_server; i++) { shards.push_back(new GraphShard()); } } VLOG(0) << "finish clear edge shard"; } void GraphTable::clear_feature_shard() { VLOG(0) << "begin clear feature shard"; std::vector> tasks; for (auto &type_shards : feature_shards) { for (auto &shard : type_shards) { tasks.push_back( load_node_edge_task_pool->enqueue([&shard, this]() -> int { delete shard; return 0; })); } } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); for (auto &shards : feature_shards) { shards.clear(); for (size_t i = 0; i < shard_num_per_server; i++) { shards.push_back(new GraphShard()); } } VLOG(0) << "finish clear feature shard"; } void GraphTable::feature_shrink_to_fit() { std::vector> tasks; for (auto &type_shards : feature_shards) { for (auto &shard : type_shards) { tasks.push_back( load_node_edge_task_pool->enqueue([&shard, this]() -> int { shard->shrink_to_fit(); return 0; })); } } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); } void GraphTable::merge_feature_shard() { VLOG(0) << "begin merge_feature_shard"; std::vector> tasks; for (size_t i = 0; i < feature_shards[0].size(); i++) { tasks.push_back(load_node_edge_task_pool->enqueue([i, this]() -> int { for (size_t j = 1; j < feature_shards.size(); j++) { feature_shards[0][i]->merge_shard(feature_shards[j][i]); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); feature_shards.resize(1); } void GraphTable::clear_graph() { VLOG(0) << "begin clear_graph"; clear_edge_shard(); clear_feature_shard(); VLOG(0) << "finish clear_graph"; } int32_t GraphTable::load_next_partition(int idx) { if (next_partition >= static_cast(partitions[idx].size())) { VLOG(0) << "partition iteration is done"; return -1; } clear_graph(idx); load_graph_to_memory_from_ssd(idx, partitions[idx][next_partition]); next_partition++; return 0; } int32_t GraphTable::load_edges_to_ssd(const std::string &path, bool reverse_edge, const std::string &edge_type) { int idx = 0; if (edge_type == "") { VLOG(0) << "edge_type not specified, loading edges to " << id_to_edge[0] << " part"; } else { if (edge_to_id.find(edge_type) == edge_to_id.end()) { VLOG(0) << "edge_type " << edge_type << " is not defined, nothing will be loaded"; return 0; } idx = edge_to_id[edge_type]; } total_memory_cost = 0; auto paths = paddle::string::split_string(path, ";"); int64_t count = 0; std::string sample_type = "random"; for (auto path : paths) { std::ifstream file(path); std::string line; while (std::getline(file, line)) { VLOG(0) << "get a line from file " << line; auto values = paddle::string::split_string(line, "\t"); count++; if (values.size() < 2) continue; auto src_id = std::stoll(values[0]); auto dist_ids = paddle::string::split_string(values[1], ";"); std::vector dist_data; for (auto x : dist_ids) { dist_data.push_back(std::stoll(x)); total_memory_cost += sizeof(uint64_t); } add_node_to_ssd(0, idx, src_id, reinterpret_cast(dist_data.data()), static_cast(dist_data.size() * sizeof(uint64_t))); } } VLOG(0) << "total memory cost = " << total_memory_cost << " bytes"; return 0; } int32_t GraphTable::dump_edges_to_ssd(int idx) { VLOG(2) << "calling dump edges to ssd"; std::vector> tasks; auto &shards = edge_shards[idx]; for (size_t i = 0; i < shards.size(); ++i) { tasks.push_back(_shards_task_pool[i % task_pool_size_]->enqueue( [&, i, this]() -> int64_t { int64_t cost = 0; std::vector &v = shards[i]->get_bucket(); for (size_t j = 0; j < v.size(); j++) { std::vector s; for (size_t k = 0; k < v[j]->get_neighbor_size(); k++) { s.push_back(v[j]->get_neighbor_id(k)); } cost += v[j]->get_neighbor_size() * sizeof(uint64_t); add_node_to_ssd(0, idx, v[j]->get_id(), (char *)(s.data()), // NOLINT s.size() * sizeof(uint64_t)); } return cost; })); } for (size_t i = 0; i < tasks.size(); i++) total_memory_cost += tasks[i].get(); return 0; } int32_t GraphTable::make_complementary_graph(int idx, int64_t byte_size) { VLOG(0) << "make_complementary_graph"; const size_t fixed_size = byte_size / 8; std::vector> count(task_pool_size_); std::vector> tasks; auto &shards = edge_shards[idx]; for (size_t i = 0; i < shards.size(); ++i) { tasks.push_back( _shards_task_pool[i % task_pool_size_]->enqueue([&, i, this]() -> int { std::vector &v = shards[i]->get_bucket(); size_t ind = i % this->task_pool_size_; for (size_t j = 0; j < v.size(); j++) { // size_t location = v[j]->get_id(); for (size_t k = 0; k < v[j]->get_neighbor_size(); k++) { count[ind][v[j]->get_neighbor_id(k)]++; } } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); std::unordered_map final_count; std::map> count_to_id; std::vector buffer; clear_graph(idx); for (int i = 0; i < task_pool_size_; i++) { for (auto &p : count[i]) { final_count[p.first] = final_count[p.first] + p.second; } count[i].clear(); } for (auto &p : final_count) { count_to_id[p.second].push_back(p.first); VLOG(2) << p.first << " appear " << p.second << " times"; } auto iter = count_to_id.rbegin(); while (iter != count_to_id.rend() && byte_size > 0) { for (auto x : iter->second) { buffer.push_back(x); if (buffer.size() >= fixed_size) { int64_t res = load_graph_to_memory_from_ssd(idx, buffer); buffer.clear(); byte_size -= res; } if (byte_size <= 0) break; } iter++; } if (byte_size > 0 && buffer.size() > 0) { int64_t res = load_graph_to_memory_from_ssd(idx, buffer); byte_size -= res; } std::string sample_type = "random"; for (auto &shard : edge_shards[idx]) { auto bucket = shard->get_bucket(); for (size_t i = 0; i < bucket.size(); i++) { bucket[i]->build_sampler(sample_type); } } return 0; } #endif /* int CompleteGraphSampler::run_graph_sampling() { pthread_rwlock_t *rw_lock = graph_table->rw_lock.get(); pthread_rwlock_rdlock(rw_lock); std::cout << "in graph sampling" << std::endl; sample_nodes.clear(); sample_neighbors.clear(); sample_res.clear(); sample_nodes.resize(gpu_num); sample_neighbors.resize(gpu_num); sample_res.resize(gpu_num); std::vector>> sample_nodes_ex(graph_table->task_pool_size_); std::vector>> sample_neighbors_ex( graph_table->task_pool_size_); for (int i = 0; i < graph_table->task_pool_size_; i++) { sample_nodes_ex[i].resize(gpu_num); sample_neighbors_ex[i].resize(gpu_num); } std::vector> tasks; for (size_t i = 0; i < graph_table->shards.size(); ++i) { tasks.push_back( graph_table->_shards_task_pool[i % graph_table->task_pool_size_] ->enqueue([&, i, this]() -> int { if (this->status == GraphSamplerStatus::terminating) return 0; paddle::framework::GpuPsGraphNode node; std::vector &v = this->graph_table->shards[i]->get_bucket(); size_t ind = i % this->graph_table->task_pool_size_; for (size_t j = 0; j < v.size(); j++) { size_t location = v[j]->get_id() % this->gpu_num; node.node_id = v[j]->get_id(); node.neighbor_size = v[j]->get_neighbor_size(); node.neighbor_offset = static_castsample_neighbors_ex[ind][location].size(); sample_nodes_ex[ind][location].emplace_back(node); for (int k = 0; k < node.neighbor_size; k++) sample_neighbors_ex[ind][location].push_back( v[j]->get_neighbor_id(k)); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); tasks.clear(); for (int i = 0; i < gpu_num; i++) { tasks.push_back( graph_table->_shards_task_pool[i % graph_table->task_pool_size_] ->enqueue([&, i, this]() -> int { if (this->status == GraphSamplerStatus::terminating) return 0; int total_offset = 0; size_t ind = i % this->graph_table->task_pool_size_; for (int j = 0; j < this->graph_table->task_pool_size_; j++) { for (size_t k = 0; k < sample_nodes_ex[j][ind].size(); k++) { sample_nodes[ind].push_back(sample_nodes_ex[j][ind][k]); sample_nodes[ind].back().neighbor_offset += total_offset; } size_t neighbor_size = sample_neighbors_ex[j][ind].size(); total_offset += neighbor_size; for (size_t k = 0; k < neighbor_size; k++) { sample_neighbors[ind].push_back( sample_neighbors_ex[j][ind][k]); } } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } for (int i = 0; i < gpu_num; i++) { sample_res[i].node_list = sample_nodes[i].data(); sample_res[i].neighbor_list = sample_neighbors[i].data(); sample_res[i].node_size = sample_nodes[i].size(); sample_res[i].neighbor_size = sample_neighbors[i].size(); } pthread_rwlock_unlock(rw_lock); if (this->status == GraphSamplerStatus::terminating) { return 0; } callback(sample_res); return 0; } void CompleteGraphSampler::init(size_t gpu_num, GraphTable *graph_table, std::vector args) { this->gpu_num = gpu_num; this->graph_table = graph_table; } int BasicBfsGraphSampler::run_graph_sampling() { pthread_rwlock_t *rw_lock = graph_table->rw_lock.get(); pthread_rwlock_rdlock(rw_lock); while (rounds > 0 && status == GraphSamplerStatus::running) { for (size_t i = 0; i < sample_neighbors_map.size(); i++) { sample_neighbors_map[i].clear(); } sample_neighbors_map.clear(); std::vector nodes_left(graph_table->shards.size(), node_num_for_each_shard); std::promise prom; std::future fut = prom.get_future(); sample_neighbors_map.resize(graph_table->task_pool_size_); int task_size = 0; std::vector> tasks; int init_size = 0; //__sync_fetch_and_add std::function bfs = [&, this](int i, int id) -> int { if (this->status == GraphSamplerStatus::terminating) { int task_left = __sync_sub_and_fetch(&task_size, 1); if (task_left == 0) { prom.set_value(0); } return 0; } size_t ind = i % this->graph_table->task_pool_size_; if (nodes_left[i] > 0) { auto iter = sample_neighbors_map[ind].find(id); if (iter == sample_neighbors_map[ind].end()) { Node *node = graph_table->shards[i]->find_node(id); if (node != NULL) { nodes_left[i]--; sample_neighbors_map[ind][id] = std::vector(); iter = sample_neighbors_map[ind].find(id); size_t edge_fetch_size = std::min((size_t) this->edge_num_for_each_node, node->get_neighbor_size()); for (size_t k = 0; k < edge_fetch_size; k++) { int64_t neighbor_id = node->get_neighbor_id(k); int node_location = neighbor_id % this->graph_table->shard_num % this->graph_table->task_pool_size_; __sync_add_and_fetch(&task_size, 1); graph_table->_shards_task_pool[node_location]->enqueue( bfs, neighbor_id % this->graph_table->shard_num, neighbor_id); iter->second.push_back(neighbor_id); } } } } int task_left = __sync_sub_and_fetch(&task_size, 1); if (task_left == 0) { prom.set_value(0); } return 0; }; for (size_t i = 0; i < graph_table->shards.size(); ++i) { std::vector &v = graph_table->shards[i]->get_bucket(); if (v.size() > 0) { int search_size = std::min(init_search_size, static_castv.size()); for (int k = 0; k < search_size; k++) { init_size++; __sync_add_and_fetch(&task_size, 1); int64_t id = v[k]->get_id(); graph_table->_shards_task_pool[i % graph_table->task_pool_size_] ->enqueue(bfs, i, id); } } // if } if (init_size == 0) { prom.set_value(0); } fut.get(); if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } VLOG(0) << "BasicBfsGraphSampler finishes the graph searching task"; sample_nodes.clear(); sample_neighbors.clear(); sample_res.clear(); sample_nodes.resize(gpu_num); sample_neighbors.resize(gpu_num); sample_res.resize(gpu_num); std::vector>> sample_nodes_ex(graph_table->task_pool_size_); std::vector>> sample_neighbors_ex( graph_table->task_pool_size_); for (int i = 0; i < graph_table->task_pool_size_; i++) { sample_nodes_ex[i].resize(gpu_num); sample_neighbors_ex[i].resize(gpu_num); } tasks.clear(); for (size_t i = 0; i < (size_t)graph_table->task_pool_size_; ++i) { tasks.push_back( graph_table->_shards_task_pool[i]->enqueue([&, i, this]() -> int { if (this->status == GraphSamplerStatus::terminating) { return 0; } paddle::framework::GpuPsGraphNode node; auto iter = sample_neighbors_map[i].begin(); size_t ind = i; for (; iter != sample_neighbors_map[i].end(); iter++) { size_t location = iter->first % this->gpu_num; node.node_id = iter->first; node.neighbor_size = iter->second.size(); node.neighbor_offset = static_castsample_neighbors_ex[ind][location].size(); sample_nodes_ex[ind][location].emplace_back(node); for (auto k : iter->second) sample_neighbors_ex[ind][location].push_back(k); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) { tasks[i].get(); sample_neighbors_map[i].clear(); } tasks.clear(); if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } for (size_t i = 0; i < (size_t)gpu_num; i++) { tasks.push_back( graph_table->_shards_task_pool[i % graph_table->task_pool_size_] ->enqueue([&, i, this]() -> int { if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } int total_offset = 0; for (int j = 0; j < this->graph_table->task_pool_size_; j++) { for (size_t k = 0; k < sample_nodes_ex[j][i].size(); k++) { sample_nodes[i].push_back(sample_nodes_ex[j][i][k]); sample_nodes[i].back().neighbor_offset += total_offset; } size_t neighbor_size = sample_neighbors_ex[j][i].size(); total_offset += neighbor_size; for (size_t k = 0; k < neighbor_size; k++) { sample_neighbors[i].push_back(sample_neighbors_ex[j][i][k]); } } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } for (int i = 0; i < gpu_num; i++) { sample_res[i].node_list = sample_nodes[i].data(); sample_res[i].neighbor_list = sample_neighbors[i].data(); sample_res[i].node_size = sample_nodes[i].size(); sample_res[i].neighbor_size = sample_neighbors[i].size(); } pthread_rwlock_unlock(rw_lock); if (this->status == GraphSamplerStatus::terminating) { return 0; } callback(sample_res); rounds--; if (rounds > 0) { for (int i = 0; i < interval && this->status == GraphSamplerStatus::running; i++) { std::this_thread::sleep_for(std::chrono::seconds(1)); } } VLOG(0)<<"bfs returning"; } return 0; } void BasicBfsGraphSampler::init(size_t gpu_num, GraphTable *graph_table, std::vector args) { this->gpu_num = gpu_num; this->graph_table = graph_table; init_search_size = args.size() > 0 ? std::stoi(args[0]) : 10; node_num_for_each_shard = args.size() > 1 ? std::stoi(args[1]) : 10; edge_num_for_each_node = args.size() > 2 ? std::stoi(args[2]) : 10; rounds = args.size() > 3 ? std::stoi(args[3]) : 1; interval = args.size() > 4 ? std::stoi(args[4]) : 60; } #endif */ std::vector GraphShard::get_batch(int start, int end, int step) { if (start < 0) start = 0; std::vector res; for (int pos = start; pos < std::min(end, static_cast(bucket.size())); pos += step) { res.push_back(bucket[pos]); } return res; } size_t GraphShard::get_size() { return bucket.size(); } int32_t GraphTable::add_comm_edge(int idx, uint64_t src_id, uint64_t dst_id) { size_t src_shard_id = src_id % shard_num; if (src_shard_id >= shard_end || src_shard_id < shard_start) { return -1; } size_t index = src_shard_id - shard_start; edge_shards[idx][index]->add_graph_node(src_id)->build_edges(false); edge_shards[idx][index]->add_neighbor(src_id, dst_id, 1.0); return 0; } int32_t GraphTable::add_graph_node(int idx, std::vector &id_list, std::vector &is_weight_list) { auto &shards = edge_shards[idx]; size_t node_size = id_list.size(); std::vector>> batch(task_pool_size_); for (size_t i = 0; i < node_size; i++) { size_t shard_id = id_list[i] % shard_num; if (shard_id >= shard_end || shard_id < shard_start) { continue; } batch[get_thread_pool_index(id_list[i])].push_back( {id_list[i], i < is_weight_list.size() ? is_weight_list[i] : false}); } std::vector> tasks; for (size_t i = 0; i < batch.size(); ++i) { if (!batch[i].size()) continue; tasks.push_back( _shards_task_pool[i]->enqueue([&shards, &batch, i, this]() -> int { for (auto &p : batch[i]) { size_t index = p.first % this->shard_num - this->shard_start; shards[index]->add_graph_node(p.first)->build_edges(p.second); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); return 0; } int32_t GraphTable::remove_graph_node(int idx, std::vector &id_list) { size_t node_size = id_list.size(); std::vector> batch(task_pool_size_); for (size_t i = 0; i < node_size; i++) { size_t shard_id = id_list[i] % shard_num; if (shard_id >= shard_end || shard_id < shard_start) continue; batch[get_thread_pool_index(id_list[i])].push_back(id_list[i]); } auto &shards = edge_shards[idx]; std::vector> tasks; for (size_t i = 0; i < batch.size(); ++i) { if (!batch[i].size()) continue; tasks.push_back( _shards_task_pool[i]->enqueue([&shards, &batch, i, this]() -> int { for (auto &p : batch[i]) { size_t index = p % this->shard_num - this->shard_start; shards[index]->delete_node(p); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); return 0; } void GraphShard::clear() { for (size_t i = 0; i < bucket.size(); i++) { delete bucket[i]; } bucket.clear(); node_location.clear(); } GraphShard::~GraphShard() { clear(); } void GraphShard::delete_node(uint64_t id) { auto iter = node_location.find(id); if (iter == node_location.end()) return; int pos = iter->second; delete bucket[pos]; if (pos != static_cast(bucket.size()) - 1) { bucket[pos] = bucket.back(); node_location[bucket.back()->get_id()] = pos; } node_location.erase(id); bucket.pop_back(); } GraphNode *GraphShard::add_graph_node(uint64_t id) { if (node_location.find(id) == node_location.end()) { node_location[id] = bucket.size(); bucket.push_back(new GraphNode(id)); } return reinterpret_cast(bucket[node_location[id]]); } GraphNode *GraphShard::add_graph_node(Node *node) { auto id = node->get_id(); if (node_location.find(id) == node_location.end()) { node_location[id] = bucket.size(); bucket.push_back(node); } return reinterpret_cast(bucket[node_location[id]]); } FeatureNode *GraphShard::add_feature_node(uint64_t id, bool is_overlap) { if (node_location.find(id) == node_location.end()) { node_location[id] = bucket.size(); bucket.push_back(new FeatureNode(id)); return reinterpret_cast(bucket[node_location[id]]); } if (is_overlap) { return reinterpret_cast(bucket[node_location[id]]); } return NULL; } void GraphShard::add_neighbor(uint64_t id, uint64_t dst_id, float weight) { find_node(id)->add_edge(dst_id, weight); } Node *GraphShard::find_node(uint64_t id) { auto iter = node_location.find(id); return iter == node_location.end() ? nullptr : bucket[iter->second]; } GraphTable::~GraphTable() { #ifdef PADDLE_WITH_GPU_GRAPH clear_graph(); #endif } int32_t GraphTable::Load(const std::string &path, const std::string ¶m) { bool load_edge = (param[0] == 'e'); bool load_node = (param[0] == 'n'); if (load_edge) { bool reverse_edge = (param[1] == '<'); std::string edge_type = param.substr(2); return this->load_edges(path, reverse_edge, edge_type); } if (load_node) { std::string node_type = param.substr(1); return this->load_nodes(path, node_type); } return 0; } std::string GraphTable::get_inverse_etype(std::string &etype) { auto etype_split = paddle::string::split_string(etype, "2"); std::string res; if (etype_split.size() == 3) { res = etype_split[2] + "2" + etype_split[1] + "2" + etype_split[0]; } else { res = etype_split[1] + "2" + etype_split[0]; } return res; } int32_t GraphTable::parse_type_to_typepath( std::string &type2files, std::string graph_data_local_path, std::vector &res_type, std::unordered_map &res_type2path) { auto type2files_split = paddle::string::split_string(type2files, ","); if (type2files_split.size() == 0) { return -1; } for (auto one_type2file : type2files_split) { auto one_type2file_split = paddle::string::split_string(one_type2file, ":"); auto type = one_type2file_split[0]; auto type_dir = one_type2file_split[1]; res_type.push_back(type); res_type2path[type] = graph_data_local_path + "/" + type_dir; } return 0; } int32_t GraphTable::parse_edge_and_load(std::string etype2files, std::string graph_data_local_path, int part_num, bool reverse) { std::vector etypes; std::unordered_map edge_to_edgedir; int res = parse_type_to_typepath( etype2files, graph_data_local_path, etypes, edge_to_edgedir); if (res != 0) { VLOG(0) << "parse edge type and edgedir failed!"; return -1; } VLOG(0) << "etypes size: " << etypes.size(); VLOG(0) << "whether reverse: " << reverse; is_load_reverse_edge = reverse; std::string delim = ";"; size_t total_len = etypes.size(); std::vector> tasks; for (size_t i = 0; i < total_len; i++) { tasks.push_back( _shards_task_pool[i % task_pool_size_]->enqueue([&, i, this]() -> int { std::string etype_path = edge_to_edgedir[etypes[i]]; auto etype_path_list = paddle::framework::localfs_list(etype_path); std::string etype_path_str; if (part_num > 0 && part_num < static_cast(etype_path_list.size())) { std::vector sub_etype_path_list( etype_path_list.begin(), etype_path_list.begin() + part_num); etype_path_str = paddle::string::join_strings(sub_etype_path_list, delim); } else { etype_path_str = paddle::string::join_strings(etype_path_list, delim); } this->load_edges(etype_path_str, false, etypes[i]); if (reverse) { std::string r_etype = get_inverse_etype(etypes[i]); this->load_edges(etype_path_str, true, r_etype); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); return 0; } int32_t GraphTable::parse_node_and_load(std::string ntype2files, std::string graph_data_local_path, int part_num) { std::vector ntypes; std::unordered_map node_to_nodedir; int res = parse_type_to_typepath( ntype2files, graph_data_local_path, ntypes, node_to_nodedir); if (res != 0) { VLOG(0) << "parse node type and nodedir failed!"; return -1; } std::string delim = ";"; std::string npath = node_to_nodedir[ntypes[0]]; auto npath_list = paddle::framework::localfs_list(npath); std::string npath_str; if (part_num > 0 && part_num < static_cast(npath_list.size())) { std::vector sub_npath_list(npath_list.begin(), npath_list.begin() + part_num); npath_str = paddle::string::join_strings(sub_npath_list, delim); } else { npath_str = paddle::string::join_strings(npath_list, delim); } if (ntypes.size() == 0) { VLOG(0) << "node_type not specified, nothing will be loaded "; return 0; } if (FLAGS_graph_load_in_parallel) { this->load_nodes(npath_str, ""); } else { for (size_t j = 0; j < ntypes.size(); j++) { this->load_nodes(npath_str, ntypes[j]); } } return 0; } int32_t GraphTable::load_node_and_edge_file(std::string etype2files, std::string ntype2files, std::string graph_data_local_path, int part_num, bool reverse) { std::vector etypes; std::unordered_map edge_to_edgedir; int res = parse_type_to_typepath( etype2files, graph_data_local_path, etypes, edge_to_edgedir); if (res != 0) { VLOG(0) << "parse edge type and edgedir failed!"; return -1; } std::vector ntypes; std::unordered_map node_to_nodedir; res = parse_type_to_typepath( ntype2files, graph_data_local_path, ntypes, node_to_nodedir); if (res != 0) { VLOG(0) << "parse node type and nodedir failed!"; return -1; } VLOG(0) << "etypes size: " << etypes.size(); VLOG(0) << "whether reverse: " << reverse; is_load_reverse_edge = reverse; std::string delim = ";"; size_t total_len = etypes.size() + 1; // 1 is for node std::vector> tasks; for (size_t i = 0; i < total_len; i++) { tasks.push_back( _shards_task_pool[i % task_pool_size_]->enqueue([&, i, this]() -> int { if (i < etypes.size()) { std::string etype_path = edge_to_edgedir[etypes[i]]; auto etype_path_list = paddle::framework::localfs_list(etype_path); std::string etype_path_str; if (part_num > 0 && part_num < static_cast(etype_path_list.size())) { std::vector sub_etype_path_list( etype_path_list.begin(), etype_path_list.begin() + part_num); etype_path_str = paddle::string::join_strings(sub_etype_path_list, delim); } else { etype_path_str = paddle::string::join_strings(etype_path_list, delim); } this->load_edges(etype_path_str, false, etypes[i]); if (reverse) { std::string r_etype = get_inverse_etype(etypes[i]); this->load_edges(etype_path_str, true, r_etype); } } else { std::string npath = node_to_nodedir[ntypes[0]]; auto npath_list = paddle::framework::localfs_list(npath); std::string npath_str; if (part_num > 0 && part_num < static_cast(npath_list.size())) { std::vector sub_npath_list( npath_list.begin(), npath_list.begin() + part_num); npath_str = paddle::string::join_strings(sub_npath_list, delim); } else { npath_str = paddle::string::join_strings(npath_list, delim); } if (ntypes.size() == 0) { VLOG(0) << "node_type not specified, nothing will be loaded "; return 0; } if (FLAGS_graph_load_in_parallel) { this->load_nodes(npath_str, ""); } else { for (size_t j = 0; j < ntypes.size(); j++) { this->load_nodes(npath_str, ntypes[j]); } } } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); return 0; } int32_t GraphTable::get_nodes_ids_by_ranges( int type_id, int idx, std::vector> ranges, std::vector &res) { std::mutex mutex; int start = 0, end, index = 0, total_size = 0; res.clear(); auto &shards = type_id == 0 ? edge_shards[idx] : feature_shards[idx]; std::vector> tasks; for (size_t i = 0; i < shards.size() && index < static_cast(ranges.size()); i++) { end = total_size + shards[i]->get_size(); start = total_size; while (start < end && index < static_cast(ranges.size())) { if (ranges[index].second <= start) { index++; } else if (ranges[index].first >= end) { break; } else { int first = std::max(ranges[index].first, start); int second = std::min(ranges[index].second, end); start = second; first -= total_size; second -= total_size; tasks.push_back(_shards_task_pool[i % task_pool_size_]->enqueue( [&shards, this, first, second, i, &res, &mutex]() -> size_t { std::vector keys; shards[i]->get_ids_by_range(first, second, &keys); size_t num = keys.size(); mutex.lock(); res.reserve(res.size() + num); for (auto &id : keys) { res.push_back(id); std::swap(res[rand() % res.size()], res[static_cast(res.size()) - 1]); } mutex.unlock(); return num; })); } } total_size += shards[i]->get_size(); } for (size_t i = 0; i < tasks.size(); i++) { tasks[i].get(); } return 0; } std::pair GraphTable::parse_node_file( const std::string &path, const std::string &node_type, int idx) { std::ifstream file(path); std::string line; uint64_t local_count = 0; uint64_t local_valid_count = 0; int num = 0; std::vector vals; size_t n = node_type.length(); while (std::getline(file, line)) { if (strncmp(line.c_str(), node_type.c_str(), n) != 0) { continue; } vals.clear(); num = paddle::string::split_string_ptr( line.c_str() + n + 1, line.length() - n - 1, '\t', &vals); if (num == 0) { continue; } uint64_t id = std::strtoul(vals[0].ptr, NULL, 10); size_t shard_id = id % shard_num; if (shard_id >= shard_end || shard_id < shard_start) { VLOG(4) << "will not load " << id << " from " << path << ", please check id distribution"; continue; } local_count++; size_t index = shard_id - shard_start; auto node = feature_shards[idx][index]->add_feature_node(id, false); if (node != NULL) { node->set_feature_size(feat_name[idx].size()); for (int i = 1; i < num; ++i) { auto &v = vals[i]; parse_feature(idx, v.ptr, v.len, node); } } local_valid_count++; } VLOG(2) << "node_type[" << node_type << "] loads " << local_count << " nodes from filepath->" << path; return {local_count, local_valid_count}; } std::pair GraphTable::parse_node_file( const std::string &path) { std::ifstream file(path); std::string line; uint64_t local_count = 0; uint64_t local_valid_count = 0; int idx = 0; auto path_split = paddle::string::split_string(path, "/"); auto path_name = path_split[path_split.size() - 1]; int num = 0; std::vector vals; while (std::getline(file, line)) { vals.clear(); num = paddle::string::split_string_ptr( line.c_str(), line.length(), '\t', &vals); if (vals.empty()) { continue; } std::string parse_node_type = vals[0].to_string(); auto it = feature_to_id.find(parse_node_type); if (it == feature_to_id.end()) { VLOG(0) << parse_node_type << "type error, please check"; continue; } idx = it->second; uint64_t id = std::strtoul(vals[1].ptr, NULL, 10); size_t shard_id = id % shard_num; if (shard_id >= shard_end || shard_id < shard_start) { VLOG(4) << "will not load " << id << " from " << path << ", please check id distribution"; continue; } local_count++; size_t index = shard_id - shard_start; auto node = feature_shards[idx][index]->add_feature_node(id, false); if (node != NULL) { for (int i = 2; i < num; ++i) { auto &v = vals[i]; parse_feature(idx, v.ptr, v.len, node); } } local_valid_count++; } VLOG(2) << local_valid_count << "/" << local_count << " nodes from filepath->" << path; return {local_count, local_valid_count}; } // // TODO(danleifeng): opt load all node_types in once reading int32_t GraphTable::load_nodes(const std::string &path, std::string node_type) { auto paths = paddle::string::split_string(path, ";"); uint64_t count = 0; uint64_t valid_count = 0; int idx = 0; if (FLAGS_graph_load_in_parallel) { if (node_type == "") { VLOG(0) << "Begin GraphTable::load_nodes(), will load all node_type once"; } std::vector>> tasks; for (size_t i = 0; i < paths.size(); i++) { tasks.push_back(load_node_edge_task_pool->enqueue( [&, i, this]() -> std::pair { return parse_node_file(paths[i]); })); } for (size_t i = 0; i < tasks.size(); i++) { auto res = tasks[i].get(); count += res.first; valid_count += res.second; } } else { VLOG(0) << "Begin GraphTable::load_nodes() node_type[" << node_type << "]"; if (node_type == "") { VLOG(0) << "node_type not specified, loading edges to " << id_to_feature[0] << " part"; } else { if (feature_to_id.find(node_type) == feature_to_id.end()) { VLOG(0) << "node_type " << node_type << " is not defined, nothing will be loaded"; return 0; } idx = feature_to_id[node_type]; } for (auto path : paths) { VLOG(2) << "Begin GraphTable::load_nodes(), path[" << path << "]"; auto res = parse_node_file(path, node_type, idx); count += res.first; valid_count += res.second; } } VLOG(0) << valid_count << "/" << count << " nodes in node_type[ " << node_type << "] are loaded successfully!"; return 0; } int32_t GraphTable::build_sampler(int idx, std::string sample_type) { for (auto &shard : edge_shards[idx]) { auto bucket = shard->get_bucket(); for (size_t i = 0; i < bucket.size(); i++) { bucket[i]->build_sampler(sample_type); } } return 0; } std::pair GraphTable::parse_edge_file( const std::string &path, int idx, bool reverse) { std::string sample_type = "random"; bool is_weighted = false; std::ifstream file(path); std::string line; uint64_t local_count = 0; uint64_t local_valid_count = 0; uint64_t part_num = 0; if (FLAGS_graph_load_in_parallel) { auto path_split = paddle::string::split_string(path, "/"); auto part_name_split = paddle::string::split_string( path_split[path_split.size() - 1], "-"); part_num = std::stoull(part_name_split[part_name_split.size() - 1]); } while (std::getline(file, line)) { size_t start = line.find_first_of('\t'); if (start == std::string::npos) continue; local_count++; uint64_t src_id = std::stoull(&line[0]); uint64_t dst_id = std::stoull(&line[start + 1]); if (reverse) { std::swap(src_id, dst_id); } size_t src_shard_id = src_id % shard_num; if (FLAGS_graph_load_in_parallel) { if (src_shard_id != (part_num % shard_num)) { continue; } } float weight = 1; size_t last = line.find_last_of('\t'); if (start != last) { weight = std::stof(&line[last + 1]); sample_type = "weighted"; is_weighted = true; } if (src_shard_id >= shard_end || src_shard_id < shard_start) { VLOG(4) << "will not load " << src_id << " from " << path << ", please check id distribution"; continue; } size_t index = src_shard_id - shard_start; auto node = edge_shards[idx][index]->add_graph_node(src_id); if (node != NULL) { node->build_edges(is_weighted); node->add_edge(dst_id, weight); } local_valid_count++; } VLOG(2) << local_count << " edges are loaded from filepath->" << path; return {local_count, local_valid_count}; } int32_t GraphTable::load_edges(const std::string &path, bool reverse_edge, const std::string &edge_type) { #ifdef PADDLE_WITH_HETERPS if (search_level == 2) total_memory_cost = 0; #endif int idx = 0; if (edge_type == "") { VLOG(0) << "edge_type not specified, loading edges to " << id_to_edge[0] << " part"; } else { if (edge_to_id.find(edge_type) == edge_to_id.end()) { VLOG(0) << "edge_type " << edge_type << " is not defined, nothing will be loaded"; return 0; } idx = edge_to_id[edge_type]; } auto paths = paddle::string::split_string(path, ";"); uint64_t count = 0; uint64_t valid_count = 0; VLOG(0) << "Begin GraphTable::load_edges() edge_type[" << edge_type << "]"; if (FLAGS_graph_load_in_parallel) { std::vector>> tasks; for (size_t i = 0; i < paths.size(); i++) { tasks.push_back(load_node_edge_task_pool->enqueue( [&, i, idx, this]() -> std::pair { return parse_edge_file(paths[i], idx, reverse_edge); })); } for (size_t j = 0; j < tasks.size(); j++) { auto res = tasks[j].get(); count += res.first; valid_count += res.second; } } else { for (auto path : paths) { auto res = parse_edge_file(path, idx, reverse_edge); count += res.first; valid_count += res.second; } } VLOG(0) << valid_count << "/" << count << " edge_type[" << edge_type << "] edges are loaded successfully"; std::string edge_size = edge_type + ":" + std::to_string(valid_count); edge_type_size.push_back(edge_size); #ifdef PADDLE_WITH_HETERPS if (search_level == 2) { if (count > 0) { dump_edges_to_ssd(idx); VLOG(0) << "dumping edges to ssd, edge count is reset to 0"; clear_graph(idx); count = 0; } return 0; } #endif if (!build_sampler_on_cpu) { // To reduce memory overhead, CPU samplers won't be created in gpugraph. // In order not to affect the sampler function of other scenario, // this optimization is only performed in load_edges function. VLOG(0) << "run in gpugraph mode!"; } else { std::string sample_type = "random"; VLOG(0) << "build sampler ... "; for (auto &shard : edge_shards[idx]) { auto bucket = shard->get_bucket(); for (size_t i = 0; i < bucket.size(); i++) { bucket[i]->build_sampler(sample_type); } } } return 0; } Node *GraphTable::find_node(int type_id, uint64_t id) { size_t shard_id = id % shard_num; if (shard_id >= shard_end || shard_id < shard_start) { return nullptr; } Node *node = nullptr; size_t index = shard_id - shard_start; auto &search_shards = type_id == 0 ? edge_shards : feature_shards; for (auto &search_shard : search_shards) { PADDLE_ENFORCE_NOT_NULL(search_shard[index], paddle::platform::errors::InvalidArgument( "search_shard[%d] should not be null.", index)); node = search_shard[index]->find_node(id); if (node != nullptr) { break; } } return node; } Node *GraphTable::find_node(int type_id, int idx, uint64_t id) { size_t shard_id = id % shard_num; if (shard_id >= shard_end || shard_id < shard_start) { return nullptr; } size_t index = shard_id - shard_start; auto &search_shards = type_id == 0 ? edge_shards[idx] : feature_shards[idx]; PADDLE_ENFORCE_NOT_NULL(search_shards[index], paddle::platform::errors::InvalidArgument( "search_shard[%d] should not be null.", index)); Node *node = search_shards[index]->find_node(id); return node; } uint32_t GraphTable::get_thread_pool_index(uint64_t node_id) { return node_id % shard_num % shard_num_per_server % task_pool_size_; } uint32_t GraphTable::get_thread_pool_index_by_shard_index( uint64_t shard_index) { return shard_index % shard_num_per_server % task_pool_size_; } int32_t GraphTable::clear_nodes(int type_id, int idx) { auto &search_shards = type_id == 0 ? edge_shards[idx] : feature_shards[idx]; for (size_t i = 0; i < search_shards.size(); i++) { search_shards[i]->clear(); } return 0; } int32_t GraphTable::random_sample_nodes(int type_id, int idx, int sample_size, std::unique_ptr &buffer, int &actual_size) { int total_size = 0; auto &shards = type_id == 0 ? edge_shards[idx] : feature_shards[idx]; for (size_t i = 0; i < shards.size(); i++) { total_size += shards[i]->get_size(); } if (sample_size > total_size) sample_size = total_size; int range_num = random_sample_nodes_ranges; if (range_num > sample_size) range_num = sample_size; if (sample_size == 0 || range_num == 0) return 0; std::vector ranges_len, ranges_pos; int remain = sample_size, last_pos = -1, num; std::set separator_set; for (int i = 0; i < range_num - 1; i++) { while (separator_set.find(num = rand() % (sample_size - 1)) != // NOLINT separator_set.end()) { } separator_set.insert(num); } for (auto p : separator_set) { ranges_len.push_back(p - last_pos); last_pos = p; } ranges_len.push_back(sample_size - 1 - last_pos); remain = total_size - sample_size + range_num; separator_set.clear(); for (int i = 0; i < range_num; i++) { while (separator_set.find(num = rand() % remain) != // NOLINT separator_set.end()) { } separator_set.insert(num); } int used = 0, index = 0; last_pos = -1; for (auto p : separator_set) { used += p - last_pos - 1; last_pos = p; ranges_pos.push_back(used); used += ranges_len[index++]; } std::vector> first_half, second_half; int start_index = rand() % total_size; // NOLINT for (size_t i = 0; i < ranges_len.size() && i < ranges_pos.size(); i++) { if (ranges_pos[i] + ranges_len[i] - 1 + start_index < total_size) { first_half.push_back({ranges_pos[i] + start_index, ranges_pos[i] + ranges_len[i] + start_index}); } else if ((ranges_pos[i] + start_index) >= total_size) { second_half.push_back( {ranges_pos[i] + start_index - total_size, ranges_pos[i] + ranges_len[i] + start_index - total_size}); } else { first_half.push_back({ranges_pos[i] + start_index, total_size}); second_half.push_back( {0, ranges_pos[i] + ranges_len[i] + start_index - total_size}); } } for (auto &pair : first_half) second_half.push_back(pair); std::vector res; get_nodes_ids_by_ranges(type_id, idx, second_half, res); actual_size = res.size() * sizeof(uint64_t); buffer.reset(new char[actual_size]); char *pointer = buffer.get(); memcpy(pointer, res.data(), actual_size); return 0; } int32_t GraphTable::random_sample_neighbors( int idx, uint64_t *node_ids, int sample_size, std::vector> &buffers, std::vector &actual_sizes, bool need_weight) { size_t node_num = buffers.size(); std::function char_del = [](char *c) { delete[] c; }; std::vector> tasks; std::vector> seq_id(task_pool_size_); std::vector> id_list(task_pool_size_); size_t index; for (size_t idy = 0; idy < node_num; ++idy) { index = get_thread_pool_index(node_ids[idy]); seq_id[index].emplace_back(idy); id_list[index].emplace_back(idx, node_ids[idy], sample_size, need_weight); } for (size_t i = 0; i < seq_id.size(); i++) { if (seq_id[i].size() == 0) continue; tasks.push_back(_shards_task_pool[i]->enqueue([&, i, this]() -> int { uint64_t node_id; std::vector> r; LRUResponse response = LRUResponse::blocked; if (use_cache) { response = scaled_lru->query(i, id_list[i].data(), id_list[i].size(), r); } size_t index = 0; std::vector sample_res; std::vector sample_keys; auto &rng = _shards_task_rng_pool[i]; for (size_t k = 0; k < id_list[i].size(); k++) { if (index < r.size() && r[index].first.node_key == id_list[i][k].node_key) { int idy = seq_id[i][k]; actual_sizes[idy] = r[index].second.actual_size; buffers[idy] = r[index].second.buffer; index++; } else { node_id = id_list[i][k].node_key; Node *node = find_node(0, idx, node_id); int idy = seq_id[i][k]; int &actual_size = actual_sizes[idy]; if (node == nullptr) { #ifdef PADDLE_WITH_HETERPS if (search_level == 2) { VLOG(2) << "enter sample from ssd for node_id " << node_id; char *buffer_addr = random_sample_neighbor_from_ssd( idx, node_id, sample_size, rng, actual_size); if (actual_size != 0) { std::shared_ptr &buffer = buffers[idy]; buffer.reset(buffer_addr, char_del); } VLOG(2) << "actual sampled size from ssd = " << actual_sizes[idy]; continue; } #endif actual_size = 0; continue; } std::shared_ptr &buffer = buffers[idy]; std::vector res = node->sample_k(sample_size, rng); actual_size = res.size() * (need_weight ? (Node::id_size + Node::weight_size) : Node::id_size); int offset = 0; uint64_t id; float weight; char *buffer_addr = new char[actual_size]; if (response == LRUResponse::ok) { sample_keys.emplace_back(idx, node_id, sample_size, need_weight); sample_res.emplace_back(actual_size, buffer_addr); buffer = sample_res.back().buffer; } else { buffer.reset(buffer_addr, char_del); } for (int &x : res) { id = node->get_neighbor_id(x); memcpy(buffer_addr + offset, &id, Node::id_size); offset += Node::id_size; if (need_weight) { weight = node->get_neighbor_weight(x); memcpy(buffer_addr + offset, &weight, Node::weight_size); offset += Node::weight_size; } } } } if (sample_res.size()) { scaled_lru->insert( i, sample_keys.data(), sample_res.data(), sample_keys.size()); } return 0; })); } for (auto &t : tasks) { t.get(); } return 0; } int32_t GraphTable::get_node_feat(int idx, const std::vector &node_ids, const std::vector &feature_names, std::vector> &res) { size_t node_num = node_ids.size(); std::vector> tasks; for (size_t idy = 0; idy < node_num; ++idy) { uint64_t node_id = node_ids[idy]; tasks.push_back(_shards_task_pool[get_thread_pool_index(node_id)]->enqueue( [&, idx, idy, node_id]() -> int { Node *node = find_node(1, idx, node_id); if (node == nullptr) { return 0; } for (size_t feat_idx = 0; feat_idx < feature_names.size(); ++feat_idx) { const std::string &feature_name = feature_names[feat_idx]; if (feat_id_map[idx].find(feature_name) != feat_id_map[idx].end()) { // res[feat_idx][idx] = // node->get_feature(feat_id_map[feature_name]); auto feat = node->get_feature(feat_id_map[idx][feature_name]); res[feat_idx][idy] = feat; } } return 0; })); } for (size_t idy = 0; idy < node_num; ++idy) { tasks[idy].get(); } return 0; } int32_t GraphTable::set_node_feat( int idx, const std::vector &node_ids, const std::vector &feature_names, const std::vector> &res) { size_t node_num = node_ids.size(); std::vector> tasks; for (size_t idy = 0; idy < node_num; ++idy) { uint64_t node_id = node_ids[idy]; tasks.push_back(_shards_task_pool[get_thread_pool_index(node_id)]->enqueue( [&, idx, idy, node_id]() -> int { size_t index = node_id % this->shard_num - this->shard_start; auto node = feature_shards[idx][index]->add_feature_node(node_id); node->set_feature_size(this->feat_name[idx].size()); for (size_t feat_idx = 0; feat_idx < feature_names.size(); ++feat_idx) { const std::string &feature_name = feature_names[feat_idx]; if (feat_id_map[idx].find(feature_name) != feat_id_map[idx].end()) { node->set_feature(feat_id_map[idx][feature_name], res[feat_idx][idy]); } } return 0; })); } for (size_t idy = 0; idy < node_num; ++idy) { tasks[idy].get(); } return 0; } void string_vector_2_string(std::vector::iterator strs_begin, std::vector::iterator strs_end, char delim, std::string *output) { size_t i = 0; for (std::vector::iterator iter = strs_begin; iter != strs_end; ++iter) { if (i > 0) { *output += delim; } *output += *iter; ++i; } } void string_vector_2_string( std::vector::iterator strs_begin, std::vector::iterator strs_end, char delim, std::string *output) { size_t i = 0; for (auto iter = strs_begin; iter != strs_end; ++iter) { if (i > 0) { output->append(&delim, 1); } output->append((*iter).ptr, (*iter).len); ++i; } } int GraphTable::parse_feature(int idx, const char *feat_str, size_t len, FeatureNode *node) { // Return (feat_id, btyes) if name are in this->feat_name, else return (-1, // "") thread_local std::vector fields; fields.clear(); char c = slot_feature_separator_.at(0); paddle::string::split_string_ptr(feat_str, len, c, &fields); thread_local std::vector fea_fields; fea_fields.clear(); c = feature_separator_.at(0); paddle::string::split_string_ptr(fields[1].ptr, fields[1].len, c, &fea_fields, FLAGS_gpugraph_slot_feasign_max_num); std::string name = fields[0].to_string(); auto it = feat_id_map[idx].find(name); if (it != feat_id_map[idx].end()) { int32_t id = it->second; std::string *fea_ptr = node->mutable_feature(id); std::string dtype = this->feat_dtype[idx][id]; if (dtype == "feasign") { // string_vector_2_string(fields.begin() + 1, fields.end(), ' ', // fea_ptr); FeatureNode::parse_value_to_bytes( fea_fields.begin(), fea_fields.end(), fea_ptr); return 0; } else if (dtype == "string") { string_vector_2_string( fea_fields.begin(), fea_fields.end(), ' ', fea_ptr); return 0; } else if (dtype == "float32") { FeatureNode::parse_value_to_bytes( fea_fields.begin(), fea_fields.end(), fea_ptr); return 0; } else if (dtype == "float64") { FeatureNode::parse_value_to_bytes( fea_fields.begin(), fea_fields.end(), fea_ptr); return 0; } else if (dtype == "int32") { FeatureNode::parse_value_to_bytes( fea_fields.begin(), fea_fields.end(), fea_ptr); return 0; } else if (dtype == "int64") { FeatureNode::parse_value_to_bytes( fea_fields.begin(), fea_fields.end(), fea_ptr); return 0; } } else { VLOG(2) << "feature_name[" << name << "] is not in feat_id_map, ntype_id[" << idx << "] feat_id_map_size[" << feat_id_map.size() << "]"; } return -1; } // thread safe shard vector merge class MergeShardVector { public: MergeShardVector(std::vector> *output, int slice_num) { _slice_num = slice_num; _shard_keys = output; _shard_keys->resize(slice_num); _mutexs = new std::mutex[slice_num]; } ~MergeShardVector() { if (_mutexs != nullptr) { delete[] _mutexs; _mutexs = nullptr; } } // merge shard keys void merge(const std::vector> &shard_keys) { // add to shard for (int shard_id = 0; shard_id < _slice_num; ++shard_id) { auto &dest = (*_shard_keys)[shard_id]; auto &src = shard_keys[shard_id]; _mutexs[shard_id].lock(); dest.insert(dest.end(), src.begin(), src.end()); _mutexs[shard_id].unlock(); } } private: int _slice_num = 0; std::mutex *_mutexs = nullptr; std::vector> *_shard_keys; }; int GraphTable::get_all_id(int type_id, int slice_num, std::vector> *output) { MergeShardVector shard_merge(output, slice_num); auto &search_shards = type_id == 0 ? edge_shards : feature_shards; std::vector> tasks; for (size_t idx = 0; idx < search_shards.size(); idx++) { for (size_t j = 0; j < search_shards[idx].size(); j++) { tasks.push_back(_shards_task_pool[j % task_pool_size_]->enqueue( [&search_shards, idx, j, slice_num, &shard_merge]() -> size_t { std::vector> shard_keys; size_t num = search_shards[idx][j]->get_all_id(&shard_keys, slice_num); // add to shard shard_merge.merge(shard_keys); return num; })); } } for (size_t i = 0; i < tasks.size(); ++i) { tasks[i].wait(); } return 0; } int GraphTable::get_all_neighbor_id( int type_id, int slice_num, std::vector> *output) { MergeShardVector shard_merge(output, slice_num); auto &search_shards = type_id == 0 ? edge_shards : feature_shards; std::vector> tasks; for (size_t idx = 0; idx < search_shards.size(); idx++) { for (size_t j = 0; j < search_shards[idx].size(); j++) { tasks.push_back(_shards_task_pool[j % task_pool_size_]->enqueue( [&search_shards, idx, j, slice_num, &shard_merge]() -> size_t { std::vector> shard_keys; size_t num = search_shards[idx][j]->get_all_neighbor_id(&shard_keys, slice_num); // add to shard shard_merge.merge(shard_keys); return num; })); } } for (size_t i = 0; i < tasks.size(); ++i) { tasks[i].wait(); } return 0; } int GraphTable::get_all_id(int type_id, int idx, int slice_num, std::vector> *output) { MergeShardVector shard_merge(output, slice_num); auto &search_shards = type_id == 0 ? edge_shards[idx] : feature_shards[idx]; std::vector> tasks; VLOG(3) << "begin task, task_pool_size_[" << task_pool_size_ << "]"; for (size_t i = 0; i < search_shards.size(); i++) { tasks.push_back(_shards_task_pool[i % task_pool_size_]->enqueue( [&search_shards, i, slice_num, &shard_merge]() -> size_t { std::vector> shard_keys; size_t num = search_shards[i]->get_all_id(&shard_keys, slice_num); // add to shard shard_merge.merge(shard_keys); return num; })); } for (size_t i = 0; i < tasks.size(); ++i) { tasks[i].wait(); } VLOG(3) << "end task, task_pool_size_[" << task_pool_size_ << "]"; return 0; } int GraphTable::get_all_neighbor_id( int type_id, int idx, int slice_num, std::vector> *output) { MergeShardVector shard_merge(output, slice_num); auto &search_shards = type_id == 0 ? edge_shards[idx] : feature_shards[idx]; std::vector> tasks; VLOG(3) << "begin task, task_pool_size_[" << task_pool_size_ << "]"; for (size_t i = 0; i < search_shards.size(); i++) { tasks.push_back(_shards_task_pool[i % task_pool_size_]->enqueue( [&search_shards, i, slice_num, &shard_merge]() -> size_t { std::vector> shard_keys; size_t num = search_shards[i]->get_all_neighbor_id(&shard_keys, slice_num); // add to shard shard_merge.merge(shard_keys); return num; })); } for (size_t i = 0; i < tasks.size(); ++i) { tasks[i].wait(); } VLOG(3) << "end task, task_pool_size_[" << task_pool_size_ << "]"; return 0; } int GraphTable::get_all_feature_ids( int type_id, int idx, int slice_num, std::vector> *output) { MergeShardVector shard_merge(output, slice_num); auto &search_shards = type_id == 0 ? edge_shards[idx] : feature_shards[idx]; std::vector> tasks; for (size_t i = 0; i < search_shards.size(); i++) { tasks.push_back(_shards_task_pool[i % task_pool_size_]->enqueue( [&search_shards, i, slice_num, &shard_merge]() -> size_t { std::vector> shard_keys; size_t num = search_shards[i]->get_all_feature_ids(&shard_keys, slice_num); // add to shard shard_merge.merge(shard_keys); return num; })); } for (size_t i = 0; i < tasks.size(); ++i) { tasks[i].wait(); } return 0; } int GraphTable::get_node_embedding_ids( int slice_num, std::vector> *output) { if (is_load_reverse_edge && !FLAGS_graph_get_neighbor_id) { return get_all_id(0, slice_num, output); } else { get_all_id(0, slice_num, output); return get_all_neighbor_id(0, slice_num, output); } } int32_t GraphTable::pull_graph_list(int type_id, int idx, int start, int total_size, std::unique_ptr &buffer, int &actual_size, bool need_feature, int step) { if (start < 0) start = 0; int size = 0, cur_size; auto &search_shards = type_id == 0 ? edge_shards[idx] : feature_shards[idx]; std::vector>> tasks; for (size_t i = 0; i < search_shards.size() && total_size > 0; i++) { cur_size = search_shards[i]->get_size(); if (size + cur_size <= start) { size += cur_size; continue; } int count = std::min(1 + (size + cur_size - start - 1) / step, total_size); int end = start + (count - 1) * step + 1; tasks.push_back(_shards_task_pool[i % task_pool_size_]->enqueue( [&search_shards, this, i, start, end, step, size]() -> std::vector { return search_shards[i]->get_batch(start - size, end - size, step); })); start += count * step; total_size -= count; size += cur_size; } for (size_t i = 0; i < tasks.size(); ++i) { tasks[i].wait(); } size = 0; std::vector> res; for (size_t i = 0; i < tasks.size(); i++) { res.push_back(tasks[i].get()); for (size_t j = 0; j < res.back().size(); j++) { size += res.back()[j]->get_size(need_feature); } } char *buffer_addr = new char[size]; buffer.reset(buffer_addr); int index = 0; for (size_t i = 0; i < res.size(); i++) { for (size_t j = 0; j < res[i].size(); j++) { res[i][j]->to_buffer(buffer_addr + index, need_feature); index += res[i][j]->get_size(need_feature); } } actual_size = size; return 0; } void GraphTable::set_feature_separator(const std::string &ch) { feature_separator_ = ch; } void GraphTable::set_slot_feature_separator(const std::string &ch) { slot_feature_separator_ = ch; } int32_t GraphTable::get_server_index_by_id(uint64_t id) { return id % shard_num / shard_num_per_server; } int32_t GraphTable::Initialize(const TableParameter &config, const FsClientParameter &fs_config) { LOG(INFO) << "in graphTable initialize"; _config = config; if (InitializeAccessor() != 0) { LOG(WARNING) << "Table accessor initialize failed"; return -1; } if (_afs_client.initialize(fs_config) != 0) { LOG(WARNING) << "Table fs_client initialize failed"; // return -1; } auto graph = config.graph_parameter(); shard_num = _config.shard_num(); LOG(INFO) << "in graphTable initialize over"; return Initialize(graph); } void GraphTable::load_node_weight(int type_id, int idx, std::string path) { auto paths = paddle::string::split_string(path, ";"); int64_t count = 0; auto &weight_map = node_weight[type_id][idx]; for (auto path : paths) { std::ifstream file(path); std::string line; while (std::getline(file, line)) { auto values = paddle::string::split_string(line, "\t"); count++; if (values.size() < 2) continue; auto src_id = std::stoull(values[0]); double weight = std::stod(values[1]); weight_map[src_id] = weight; } } } int32_t GraphTable::Initialize(const GraphParameter &graph) { task_pool_size_ = graph.task_pool_size(); build_sampler_on_cpu = graph.build_sampler_on_cpu(); #ifdef PADDLE_WITH_HETERPS _db = NULL; search_level = graph.search_level(); if (search_level >= 2) { _db = paddle::distributed::RocksDBHandler::GetInstance(); _db->initialize("./temp_gpups_db", task_pool_size_); } // gpups_mode = true; // auto *sampler = // CREATE_PSCORE_CLASS(GraphSampler, graph.gpups_graph_sample_class()); // auto slices = // string::split_string(graph.gpups_graph_sample_args(), ","); // std::cout << "slices" << std::endl; // for (auto x : slices) std::cout << x << std::endl; // sampler->init(graph.gpu_num(), this, slices); // graph_sampler.reset(sampler); #endif if (shard_num == 0) { server_num = 1; _shard_idx = 0; shard_num = graph.shard_num(); } use_cache = graph.use_cache(); if (use_cache) { cache_size_limit = graph.cache_size_limit(); cache_ttl = graph.cache_ttl(); make_neighbor_sample_cache(cache_size_limit, cache_ttl); } _shards_task_pool.resize(task_pool_size_); for (size_t i = 0; i < _shards_task_pool.size(); ++i) { _shards_task_pool[i].reset(new ::ThreadPool(1)); _shards_task_rng_pool.push_back(paddle::framework::GetCPURandomEngine(0)); } load_node_edge_task_pool.reset(new ::ThreadPool(load_thread_num)); auto graph_feature = graph.graph_feature(); auto node_types = graph.node_types(); auto edge_types = graph.edge_types(); VLOG(0) << "got " << edge_types.size() << "edge types in total"; feat_id_map.resize(node_types.size()); for (int k = 0; k < edge_types.size(); k++) { VLOG(0) << "in initialize: get a edge_type " << edge_types[k]; edge_to_id[edge_types[k]] = k; id_to_edge.push_back(edge_types[k]); } feat_name.resize(node_types.size()); feat_shape.resize(node_types.size()); feat_dtype.resize(node_types.size()); VLOG(0) << "got " << node_types.size() << " node types in total"; for (int k = 0; k < node_types.size(); k++) { feature_to_id[node_types[k]] = k; auto node_type = node_types[k]; auto feature = graph_feature[k]; id_to_feature.push_back(node_type); int feat_conf_size = static_cast(feature.name().size()); for (int i = 0; i < feat_conf_size; i++) { // auto &f_name = common.attributes()[i]; // auto &f_shape = common.dims()[i]; // auto &f_dtype = common.params()[i]; auto &f_name = feature.name()[i]; auto &f_shape = feature.shape()[i]; auto &f_dtype = feature.dtype()[i]; feat_name[k].push_back(f_name); feat_shape[k].push_back(f_shape); feat_dtype[k].push_back(f_dtype); feat_id_map[k][f_name] = i; VLOG(0) << "init graph table feat conf name:" << f_name << " shape:" << f_shape << " dtype:" << f_dtype; } } // this->table_name = common.table_name(); // this->table_type = common.name(); this->table_name = graph.table_name(); this->table_type = graph.table_type(); VLOG(0) << " init graph table type " << this->table_type << " table name " << this->table_name; // int feat_conf_size = static_cast(common.attributes().size()); // int feat_conf_size = static_cast(graph_feature.name().size()); VLOG(0) << "in init graph table shard num = " << shard_num << " shard_idx" << _shard_idx; shard_num_per_server = sparse_local_shard_num(shard_num, server_num); shard_start = _shard_idx * shard_num_per_server; shard_end = shard_start + shard_num_per_server; VLOG(0) << "in init graph table shard idx = " << _shard_idx << " shard_start " << shard_start << " shard_end " << shard_end; edge_shards.resize(id_to_edge.size()); node_weight.resize(2); node_weight[0].resize(id_to_edge.size()); #ifdef PADDLE_WITH_HETERPS partitions.resize(id_to_edge.size()); #endif for (size_t k = 0; k < edge_shards.size(); k++) { for (size_t i = 0; i < shard_num_per_server; i++) { edge_shards[k].push_back(new GraphShard()); } } node_weight[1].resize(id_to_feature.size()); feature_shards.resize(id_to_feature.size()); for (size_t k = 0; k < feature_shards.size(); k++) { for (size_t i = 0; i < shard_num_per_server; i++) { feature_shards[k].push_back(new GraphShard()); } } return 0; } void GraphTable::init_worker_poll(int gpu_num) { _cpu_worker_pool.resize(gpu_num); for (int i = 0; i < gpu_num; i++) { _cpu_worker_pool[i].reset(new ::ThreadPool(16)); } } void GraphTable::build_graph_total_keys() { VLOG(0) << "begin insert edge to graph_total_keys"; // build node embedding id std::vector> keys; this->get_node_embedding_ids(1, &keys); graph_total_keys_.insert( graph_total_keys_.end(), keys[0].begin(), keys[0].end()); VLOG(0) << "finish insert edge to graph_total_keys"; } void GraphTable::build_graph_type_keys() { VLOG(0) << "begin build_graph_type_keys"; graph_type_keys_.clear(); graph_type_keys_.resize(this->feature_to_id.size()); int cnt = 0; for (auto &it : this->feature_to_id) { auto node_idx = it.second; std::vector> keys; this->get_all_id(1, node_idx, 1, &keys); type_to_index_[node_idx] = cnt; graph_type_keys_[cnt++] = std::move(keys[0]); } VLOG(0) << "finish build_graph_type_keys"; VLOG(0) << "begin insert feature into graph_total_keys"; // build feature embedding id for (auto &it : this->feature_to_id) { auto node_idx = it.second; std::vector> keys; this->get_all_feature_ids(1, node_idx, 1, &keys); graph_total_keys_.insert( graph_total_keys_.end(), keys[0].begin(), keys[0].end()); } VLOG(0) << "finish insert feature into graph_total_keys"; } } // namespace distributed }; // namespace paddle