/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/device_context.h" namespace paddle { namespace operators { class UniformRandomTableInferShape : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { VLOG(3) << "Infershape..."; PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of UniformRandomTableOp should not be null."); PADDLE_ENFORCE( ctx->Attrs().Get("min") < ctx->Attrs().Get("max"), "uniform_random's min must less then max"); auto &shape = ctx->Attrs().Get>("shape"); std::vector temp; temp.reserve(shape.size()); for (auto dim : shape) { temp.push_back(static_cast(dim)); } ctx->SetOutputDim("Out", framework::make_ddim(temp)); } }; class UniformRandomTableOp : public framework::OperatorBase { public: using framework::OperatorBase::OperatorBase; private: void RunImpl(const framework::Scope &scope, const platform::Place &dev_place) const override { VLOG(3) << "RunImpl..."; auto out = scope.FindVar(Output("Out"))->GetMutable(); auto shard_cnt = Attr("shard_cnt"); auto shard_id = Attr("shard_id"); auto max_id = Attr("max_id"); auto shape = Attr>("shape"); auto tensor = out->mutable_value(); tensor->Resize(framework::make_ddim(shape)); // Only allocate the memory of large table on CPU auto cpu = platform::CPUPlace(); float *data = tensor->mutable_data(cpu); VLOG(3) << "generate seed"; unsigned int seed = static_cast(Attr("seed")); std::minstd_rand engine; if (seed == 0) { seed = std::random_device()(); } engine.seed(seed); std::uniform_real_distribution dist(Attr("min"), Attr("max")); int64_t size = tensor->numel(); for (int64_t i = 0; i < size; ++i) { data[i] = dist(engine); } // initialize rows by round-robin // TODO(Yancey1989): need to support other way to distribute Ids VLOG(3) << "calculate rows_size..."; int64_t rows_size = 0; if (max_id % shard_cnt == 0) { rows_size = max_id / shard_cnt; } else { rows_size = max_id / shard_cnt + 1; } auto *rows = out->mutable_rows(); rows->resize(rows_size); (*rows)[0] = shard_id; for (int64_t idx = 1; idx < rows_size; ++idx) { (*rows)[idx] = (*rows)[idx - 1] + shard_cnt; } out->set_height(max_id); } }; class UniformRandomTableOpMaker : public framework::OpProtoAndCheckerMaker { public: UniformRandomTableOpMaker(OpProto *proto, OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Out", "(SelectedRows)" "The output table of uniform random table op."); AddComment(R"DOC( Uniform random operator for initializing a table. This operator initializes a SelectedRows with random values sampled from a uniform distribution. )DOC"); AddAttr("max_id", "(int, required)" "The maximal Id for the table."); AddAttr("shard_cnt", "(int, required)" "The count of shards for distributing the table."); AddAttr("shard_id", "(int, required) The current shard ID."); AddAttr>("shape", "(vector) The shape of the output tensor"); AddAttr("min", "(float, default -1.0) " "Minimum value of uniform random") .SetDefault(-1.0f); AddAttr("max", "(float, default 1.0) " "Maximun value of uniform random") .SetDefault(1.0f); AddAttr("seed", "(int, default 0) " "Random seed used for generating samples. " "0 means use a seed generated by the system." "Note that if seed is not 0, this operator will always " "generate the same random numbers every time.") .SetDefault(0); AddAttr("dtype", "(int, default 5(FP32)) Output tensor data type") .SetDefault(framework::proto::VarType::FP32); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(uniform_random_table, ops::UniformRandomTableOp, ops::UniformRandomTableInferShape, ops::UniformRandomTableOpMaker, paddle::framework::EmptyGradOpMaker);