# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.fluid.framework import dygraph_only from paddle.fluid.dygraph.amp.auto_cast import amp_state from paddle.amp.auto_cast import auto_cast from paddle.fluid import core __all__ = [] class LegacyPyLayerContext(object): """ The object of this class is a context that is used in PyLayer to enhance the function. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): # ctx is a object of PyLayerContext. y = paddle.tanh(x) ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # ctx is a object of PyLayerContext. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ def __init__(self): self.container = None self._amp_state = amp_state() def save_for_backward(self, *tensors): """ Saves given tensors that backward need. Use ``saved_tensor`` in the `backward` to get the saved tensors. .. note:: This API should be called at most once, and only inside `forward`. Args: tensors(list of Tensors): Tensors to be stored. Returns: None Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): # ctx is a context object that store some objects for backward. y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ self.container = tensors def saved_tensor(self): """ Get the tensors stored by ``save_for_backward``. Returns: list of Tensors or None: If context contains tensors stored by `save_for_backward`, then return these tensors, otherwise return None. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): # ctx is a context object that store some objects for backward. y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ return self.container def with_mateclass(meta, *bases): class impl(meta): def __new__(cls, name, temp_bases, attrs): return meta(name, bases, attrs) return type.__new__(impl, "impl", (), {}) class CPyLayer(object): @classmethod @dygraph_only def apply(cls, *args, **kwargs): """ After building the custom PyLayer, run it through the ``apply``. Args: *args(tuple): input of PyLayer. **kwargs(dict): input of PyLayer. Returns: tensors or other types : output of PyLayer. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x, func1, func2=paddle.square): ctx.func = func2 y = func1(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - ctx.func(y)) return grad data = paddle.randn([2, 3], dtype="float64") data.stop_gradient = False # run custom Layer. z = cus_tanh.apply(data, func1=paddle.tanh) """ place = paddle.fluid.framework._current_expected_place() with paddle.fluid.dygraph.no_grad(): return core.pylayer_apply(place, cls, *args, **kwargs) class PyLayerBackward(LegacyPyLayerContext): def backward(self, *args, **kwargs): with paddle.fluid.dygraph.guard(): with paddle.fluid.dygraph.no_grad(): if self._amp_state and 'enable' in self._amp_state and self._amp_state[ 'enable']: with auto_cast(**args[0]._amp_state): return self._forward_cls.backward(*args, **kwargs) else: return self._forward_cls.backward(*args, **kwargs) return self._forward_cls.backward(*args, **kwargs) class LayerMeta(type): def __init__(cls, name, bases, attrs): cls._backward_function = type(name + '_backward', (PyLayerBackward, ), {"_forward_cls": cls}) return super(LayerMeta, cls).__init__(name, bases, attrs) class LegacyPyLayer(with_mateclass(LayerMeta, CPyLayer)): """ Build a custom `Layer` by creating subclasses. Subclasses need to follow the following rules: 1. Subclasses contain `forward` and `backward` function. Both forward and backward are @staticmethod. Their first argument should be a context and `None` can not be included in the returned result. 2. Input of backward contains a context as the first argument, and the rest arguments are the gradient of forward's output tensors. so the number of backward's input tensors equal to the number of forward output tensors. If you need the forward's inputs or outputs in `backward`, you can use `save_for_backward` to store the required tensors, and then use them in the backward. 3. Output of backward function can only be `Tensor` or tuple/list of `Tensor`. Output tensors of backward are the gradient of forward's input tensors, so the number of backward's output tensors equal to the number of forward input tensors. After building the custom Layer, run it through the `apply` method. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer # Inherit from PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x, func1, func2=paddle.square): # ctx is a context object that store some objects for backward. ctx.func = func2 y = func1(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod # forward has only one output, so there is only one gradient in the input of backward. def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - ctx.func(y)) # forward has only one input, so only one gradient tensor is returned. return grad data = paddle.randn([2, 3], dtype="float64") data.stop_gradient = False z = cus_tanh.apply(data, func1=paddle.tanh) z.mean().backward() print(data.grad) """ @staticmethod def forward(ctx, *args, **kwargs): """ It is to be overloaded by subclasses. It must accept a object of `PyLayerContext` as the first argument, followed by any number of arguments (tensors or other types). `None` can not be included in the returned result. Args: *args(tuple): input of PyLayer. **kwargs(dict): input of PyLayer. Returns: tensors or other types : output of PyLayer. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ raise NotImplementedError( "You must implement the forward function for PyLayer.") @staticmethod def backward(ctx, *args, **kwargs): """ This is a function to calculate the gradient. It is to be overloaded by subclasses. It must accept a object of `PyLayerContext` as the first argument, and the rest arguments are the gradient of forward's output tensors. Output tensors of backward are the gradient of forward's input tensors. Args: *args(tuple): The gradient of forward's output tensor(s). **kwargs(dict): The gradient of forward's output tensor(s). Returns: Tensor or list of Tensors: The gradient of forward's input tensor(s). Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ raise NotImplementedError( "You must implement the backward function for PyLayer.") class EagerPyLayerContext(object): def save_for_backward(self, *tensors): """ Saves given tensors that backward need. Use ``saved_tensor`` in the `backward` to get the saved tensors. .. note:: This API should be called at most once, and only inside `forward`. Args: tensors(list of Tensors): Tensors to be stored. Returns: None Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): # ctx is a context object that store some objects for backward. y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ self.container = tensors def saved_tensor(self): """ Get the tensors stored by ``save_for_backward``. Returns: list of Tensors or None: If context contains tensors stored by `save_for_backward`, then return these tensors, otherwise return None. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): # ctx is a context object that store some objects for backward. y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ return self.container def mark_dirty(self, *args): self.dirty_tensors = args def mark_non_differentiable(self, *args): """ Marks outputs as non-differentiable. This should be called at most once, only from inside thethe `forward` method, and all arguments should be tensor outputs. This will mark outputs as not requiring gradients, increasing the efficiency of backward computation. You still need to accept a gradient for each output in `backward`, but it's always going to be a zero tensor with the same shape as the shape of a corresponding output. Examples: .. code-block:: python import os os.environ['FLAGS_enable_eager_mode'] = '1' import paddle from paddle.autograd import PyLayer import numpy as np class Tanh(PyLayer): @staticmethod def forward(ctx, x): a = x + x b = x + x + x ctx.mark_non_differentiable(a) return a, b @staticmethod def backward(ctx, grad_a, grad_b): assert np.equal(grad_a.numpy(), paddle.zeros([1]).numpy()) assert np.equal(grad_b.numpy(), paddle.ones([1], dtype="float64").numpy()) return grad_b x = paddle.ones([1], dtype="float64") x.stop_gradient = False a, b = Tanh.apply(x) b.sum().backward() """ self.non_differentiable = args def set_materialize_grads(self, value: bool): """ Sets whether to materialize output grad tensors. Default is True. This should be called only from inside the `forward` method. If True, undefined output grad tensors will be expanded to tensors full of zeros prior to calling the `backward` method. If False, undefined output grad tensors will be None. Examples: .. code-block:: python import os os.environ['FLAGS_enable_eager_mode'] = '1' import paddle from paddle.autograd import PyLayer import numpy as np class Tanh(PyLayer): @staticmethod def forward(ctx, x): return x, x+x @staticmethod def backward(ctx, grad, grad2): assert np.equal(grad2.numpy(), paddle.zeros([1]).numpy()) return grad class Tanh2(PyLayer): @staticmethod def forward(ctx, x): ctx.set_materialize_grads(False) return x, x+x @staticmethod def backward(ctx, grad, grad2): assert grad2==None return grad x = paddle.ones([1], dtype="float64") x.stop_gradient = False Tanh.apply(x)[0].backward() x2 = paddle.ones([1], dtype="float64") x2.stop_gradient = False Tanh2.apply(x2)[0].backward() """ self.materialize_grads = value class EagerPyLayerBackward(core.eager.PyLayer, EagerPyLayerContext): def backward(self, *args): return self._forward_cls.backward(self, *args) class EagerPyLayerMeta(type): def __init__(cls, name, bases, attrs): cls._backward_function = type(name + '_backward', (EagerPyLayerBackward, ), {"_forward_cls": cls}) return super(EagerPyLayerMeta, cls).__init__(name, bases, attrs) class EagerPyLayer( with_mateclass(EagerPyLayerMeta, core.eager.PyLayer, EagerPyLayerContext)): @staticmethod def forward(ctx, *args, **kwargs): """ It is to be overloaded by subclasses. It must accept a object of `PyLayerContext` as the first argument, followed by any number of arguments (tensors or other types). `None` can not be included in the returned result. Args: *args(tuple): input of PyLayer. **kwargs(dict): input of PyLayer. Returns: tensors or other types : output of PyLayer. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ raise NotImplementedError( "You must implement the forward function for PyLayer.") @staticmethod def backward(ctx, *args): """ This is a function to calculate the gradient. It is to be overloaded by subclasses. It must accept a object of `PyLayerContext` as the first argument, and the rest arguments are the gradient of forward's output tensors. Output tensors of backward are the gradient of forward's input tensors. Args: *args(tuple): The gradient of forward's output tensor(s). **kwargs(dict): The gradient of forward's output tensor(s). Returns: Tensor or list of Tensors: The gradient of forward's input tensor(s). Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ raise NotImplementedError( "You must implement the backward function for PyLayer.") def once_differentiable(backward): def wrapper(ctx, *args): with paddle.fluid.dygraph.no_grad(): outputs = backward(ctx, *args) return outputs return wrapper