- backward_op : abs_double_grad forward : abs_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x) args : (Tensor x, Tensor grad_x_grad) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : abs_double_grad - backward_op : abs_grad forward : abs (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : abs_grad backward : abs_double_grad - backward_op : add_double_grad forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_out] kernel : func : add_double_grad optional : grad_x_grad, grad_y_grad backward : add_triple_grad inplace : (grad_x_grad -> grad_out_grad) - backward_op : add_grad forward : add (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : add_grad no_need_buffer : x, y backward : add_double_grad inplace : (out_grad -> x_grad) - backward_op : add_triple_grad forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out) args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1) output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [grad_grad_x, grad_grad_y] kernel : func : add_triple_grad inplace : (grad_grad_out_grad -> grad_grad_x_grad) - backward_op : affine_grid_grad forward : affine_grid (Tensor input, IntArray outputShape, bool align_corners=true) -> Tensor(output) args : (Tensor input, Tensor output_grad, IntArray outputShape, bool align_corners=true) output : Tensor(input_grad) infer_meta : func : AffineGridGradInferMeta param : [output_grad, outputShape, align_corners] kernel : func : affine_grid_grad param : [output_grad, outputShape, align_corners] no_need_buffer : input - backward_op : amax_grad forward: amax (Tensor x, int64_t[] axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : amax_grad - backward_op : amin_grad forward: amin (Tensor x, int64_t[] axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : amin_grad - backward_op : assign_grad forward : assign (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) invoke : assign(out_grad) - backward_op : assign_out__grad forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta kernel : func : assign inplace : (out_grad -> x_grad) - backward_op : batch_norm_double_grad forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias) args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out, Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, x] kernel : func : batch_norm_grad_grad data_type : x optional : out_mean, out_variance, grad_x_grad, grad_scale_grad, grad_bias_grad inplace : (grad_out -> grad_out_grad) - backward_op : batch_norm_grad forward : batch_norm (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space) args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, bias] kernel : func : batch_norm_grad data_type : out_grad optional : mean_out, variance_out, reserve_space backward : batch_norm_double_grad - backward_op : bce_loss_grad forward : bce_loss (Tensor input, Tensor label) -> Tensor(out) args : (Tensor input, Tensor label, Tensor out_grad) output : Tensor(input_grad) infer_meta : func : UnchangedInferMeta param : [input] kernel : func : bce_loss_grad inplace : (out_grad -> input_grad) - backward_op : bicubic_interp_grad forward : bicubic_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] optional: out_size, size_tensor, scale_tensor kernel : func : bicubic_interp_grad data_type : output_grad - backward_op : bilinear_interp_grad forward : bilinear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] optional: out_size, size_tensor, scale_tensor kernel : func : bilinear_interp_grad data_type : output_grad - backward_op : bilinear_tensor_product_grad forward : bilinear_tensor_product (Tensor x, Tensor y, Tensor weight, Tensor bias) -> Tensor(out) args : (Tensor x, Tensor y, Tensor weight, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad), Tensor(weight_grad), Tensor(bias_grad) infer_meta : func : BilinearTensorProductGradInferMeta kernel : func : bilinear_tensor_product_grad - backward_op : broadcast_tensors_grad forward : broadcast_tensors (Tensor[] input) -> Tensor[](out) args : (Tensor[] input, Tensor[] out_grad) output : Tensor[](input_grad) infer_meta : func : UnchangedMultiInferMeta param : [input] kernel : func : broadcast_tensors_grad param : [out_grad] no_need_buffer : input - backward_op : cast_grad forward : cast (Tensor x, DataType dtype) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) invoke : cast (out_grad, x.dtype()) no_need_buffer : x - backward_op : clip_double_grad forward : clip_grad (Tensor x, Tensor grad_out, Scalar min = 0., Scalar max = 0.) -> Tensor(grad_x) args : (Tensor x, Tensor grad_x_grad, Scalar min = 0., Scalar max = 0.) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : clip_grad - backward_op : clip_grad forward : clip (Tensor x, Scalar min, Scalar max) -> Tensor(out) args : (Tensor x, Tensor out_grad, Scalar min = 0., Scalar max = 0.) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : clip_grad backward : clip_double_grad inplace : (out_grad -> x_grad) - backward_op : concat_double_grad forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x) args : (Tensor[] grad_x_grad, Scalar axis = 0) output : Tensor(grad_out_grad) invoke : concat(grad_x_grad, axis) - backward_op : concat_grad forward : concat (Tensor[] x, Scalar axis) -> Tensor(out) args : (Tensor[] x, Tensor out_grad, Scalar axis = 0) output : Tensor[](x_grad){x.size()} infer_meta : func : UnchangedMultiInferMeta param : [x] kernel : func : concat_grad no_need_buffer : x backward : concat_double_grad - backward_op : conv2d_grad forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) -> Tensor(out) args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) output : Tensor(input_grad), Tensor(filter_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [input, filter] kernel : func : conv2d_grad backward : conv2d_grad_grad - backward_op : conv2d_grad_grad forward : conv2d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) -> Tensor(grad_input), Tensor(grad_filter) args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int[] dilations, int groups, str data_format) output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param: [input, filter, grad_out] kernel : func : conv2d_grad_grad optional : grad_input_grad, grad_filter_grad - backward_op : conv2d_transpose_double_grad forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter) args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad) infer_meta : func : Conv2dTransposeDoubleGradInferMeta kernel : func : conv2d_transpose_grad_grad - backward_op : conv2d_transpose_grad forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : Conv2dTransposeGradInferMeta kernel : func : conv2d_transpose_grad backward : conv2d_transpose_double_grad - backward_op : conv3d_double_grad forward : conv3d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_input), Tensor(grad_filter) args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param: [input, filter, grad_out] kernel : func : conv3d_double_grad optional : grad_input_grad, grad_filter_grad - backward_op : conv3d_grad forward : conv3d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(input_grad), Tensor(filter_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [input, filter] kernel : func : conv3d_grad backward : conv3d_double_grad - backward_op : conv3d_transpose_grad forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : ConvTransposeGradInferMeta kernel : func : conv3d_transpose_grad - backward_op : cross_entropy_with_softmax_grad forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss) args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) output : Tensor(input_grad) infer_meta : func : CrossEntropyWithSoftmaxGradInferMeta kernel : func : cross_entropy_with_softmax_grad data_type : softmax inplace : (softmax -> input_grad) - backward_op : cumprod_grad forward : cumprod (Tensor x, int dim) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int dim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : cumprod_grad - backward_op : cumsum_grad forward : cumsum(Tensor x, Scalar axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out) args : (Tensor out_grad, Scalar axis, bool flatten, bool exclusive, bool reverse) output : Tensor(x_grad) invoke : cumsum(out_grad, axis, flatten, exclusive, !reverse) - backward_op : deformable_conv_grad forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out) args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad) infer_meta : func : DeformableConvGradInferMeta kernel : func : deformable_conv_grad data_type : x optional : mask - backward_op : depthwise_conv2d_double_grad forward : depthwise_conv2d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_input), Tensor(grad_filter) args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param: [input, filter, grad_out] kernel : func : depthwise_conv2d_double_grad optional : grad_input_grad, grad_filter_grad - backward_op : depthwise_conv2d_grad forward : depthwise_conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(input_grad), Tensor(filter_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [input, filter] kernel : func : depthwise_conv2d_grad param : [input, filter, out_grad, strides, paddings, padding_algorithm, groups, dilations, data_format] backward : depthwise_conv2d_double_grad - backward_op : depthwise_conv2d_transpose_grad forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : Conv2dTransposeGradInferMeta kernel : func : depthwise_conv2d_transpose_grad - backward_op : divide_double_grad forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [y, grad_x, grad_x] kernel : func : divide_double_grad data_type : out optional : grad_x_grad, grad_y_grad inplace : (grad_x_grad -> grad_out_grad) - backward_op : divide_grad forward : divide (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : divide_grad backward : divide_double_grad - backward_op : dropout_grad forward : dropout (Tensor x, Tensor seed_tensor, Scalar p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask) args : (Tensor mask, Tensor out_grad, Scalar p, bool is_test, str mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : dropout_grad - backward_op : eigvalsh_grad forward : eigvalsh (Tensor x, str uplo, bool is_test) -> Tensor(eigenvalues), Tensor(eigenvectors) args : (Tensor eigenvectors, Tensor eigenvalues_grad, str uplo, bool is_test) output : Tensor(x_grad) infer_meta : func : EigvalshGradInferMeta kernel : func : eigvalsh_grad data_type : eigenvectors data_transform : skip_transform : eigenvalues_grad - backward_op : einsum_grad forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape) args : (Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation) output : Tensor[](x_grad){x.size()} infer_meta : func : UnchangedMultiInferMeta param : [x_shape] kernel : func : einsum_grad - backward_op : elementwise_pow_grad forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : elementwise_pow_grad - backward_op : embedding_grad forward : embedding (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) -> Tensor(out) args : (Tensor x, Tensor weight, Tensor out_grad, int64_t padding_idx=-1, bool sparse=false) output : Tensor(weight_grad) invoke : embedding_grad_impl(x, weight, out_grad, padding_idx, sparse, weight_grad) no_need_buffer : weight - backward_op : expand_as_grad forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] target_shape) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : expand_as_grad no_need_buffer : x - backward_op : expand_double_grad forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray shape) output : Tensor(grad_out_grad) invoke : expand(grad_x_grad, shape) - backward_op : expand_grad forward : expand (Tensor x, IntArray shape) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray shape) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : expand_grad no_need_buffer : x backward : expand_double_grad - backward_op : exponential__grad forward : exponential_ (Tensor x, float lam) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta invoke : zeros_like(out_grad) - backward_op : fill_diagonal_grad forward : fill_diagonal (Tensor x, float value, int offset, bool wrap) -> Tensor(out) args : (Tensor out_grad, float value, int offset, bool wrap) output : Tensor(x_grad) infer_meta : func : FillDiagonalGradInferMeta kernel : func : fill_diagonal_grad - backward_op : fill_grad forward : fill (Tensor x, Scalar value) -> Tensor(out) args : (Tensor out_grad, Scalar value) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : fill_grad inplace : (out_grad -> x_grad) - backward_op : flatten_grad forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape) args : (Tensor xshape, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param : [xshape] kernel : func : flatten_grad data_type: out_grad backend: out_grad layout: out_grad inplace : (out_grad -> x_grad) - backward_op : fmax_grad forward : fmax(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : fmax_grad - backward_op : fmin_grad forward : fmin(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : fmin_grad - backward_op : frobenius_norm_grad forward : frobenius_norm(Tensor x, int64_t[] axis, bool keep_dim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keep_dim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : frobenius_norm_grad - backward_op : gather_grad forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : data_type: x func : gather_grad no_need_buffer : x - backward_op : group_norm_grad forward : group_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int groups, str data_layout) -> Tensor(y), Tensor(mean), Tensor(variance) args : (Tensor x, Tensor scale, Tensor bias, Tensor y, Tensor mean, Tensor variance, Tensor y_grad, float epsilon, int groups, str data_layout) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [y, scale, bias] kernel : func : group_norm_grad data_type : y_grad optional: scale, bias inplace : (y_grad -> x_grad) - backward_op : hardswish_grad forward : hardswish (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold = 6.0, float scale = 6.0, float offset = 3.0) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : hardswish_grad inplace : (out_grad -> x_grad) - backward_op : hardtanh_grad forward : hardtanh (Tensor x, float t_min, float t_max) -> Tensor(out) args : (Tensor x, Tensor out_grad, float t_min, float t_max) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : hardtanh_grad inplace : (out_grad -> x_grad) - backward_op : hsigmoid_loss_grad forward : hsigmoid_loss (Tensor x, Tensor label, Tensor w, Tensor bias, Tensor path, Tensor code, int num_classes, bool remote_prefetch, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out) args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool remote_prefetch, bool is_sparse) output : Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x ,w, bias] optional: path, code, bias kernel : func : hsigmoid_loss_grad - backward_op : huber_loss_grad forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual) args : (Tensor residual, Tensor out_grad, float delta) output : Tensor(input_grad), Tensor(label_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [residual, residual] kernel : func : huber_loss_grad - backward_op : index_add_grad forward : index_add(Tensor x, Tensor index, Tensor add_value, int axis) -> Tensor(out) args : (Tensor index, Tensor add_value, Tensor out_grad, int axis) output : Tensor(x_grad), Tensor(add_value_grad) infer_meta : func : IndexAddGradInferMeta kernel : func : index_add_grad data_type : out_grad inplace : (out_grad -> x_grad) - backward_op : instance_norm_double_grad forward : instance_norm_grad(Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, float epsilon) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias) args : (Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float epsilon) output : Tensor(x_grad), Tensor(fwd_scale_grad), Tensor(grad_y_grad) infer_meta : func : InstanceNormDoubleGradInferMeta kernel : func : instance_norm_double_grad data_type : x optional : fwd_scale, grad_x_grad, grad_scale_grad, grad_bias_grad - backward_op : instance_norm_grad forward : instance_norm(Tensor x, Tensor scale, Tensor bias, float epsilon) -> Tensor(y), Tensor(saved_mean), Tensor(saved_variance) args : (Tensor x, Tensor scale, Tensor saved_mean, Tensor saved_variance, Tensor y_grad, float epsilon) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : InstanceNormGradInferMeta kernel : func : instance_norm_grad data_type : x optional : scale backward : instance_norm_double_grad - backward_op : kldiv_loss_grad forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out) args : (Tensor x, Tensor label, Tensor out_grad, str reduction) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : kldiv_loss_grad no_need_buffer : x - backward_op : kron_grad forward : kron (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : kron_grad data_type : out_grad - backward_op : layer_norm_grad forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis) -> Tensor(out), Tensor(mean), Tensor(variance) args : (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : LayerNormGradInferMeta param : [x, scale, bias] kernel : func : layer_norm_grad data_type : out_grad no_need_buffer : bias optional : scale, bias - backward_op : linear_interp_grad forward : linear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] optional: out_size, size_tensor, scale_tensor kernel : func : linear_interp_grad data_type : output_grad - backward_op : log_softmax_grad forward : log_softmax(Tensor x, int axis) -> Tensor(out) args : (Tensor out, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out] kernel : func : log_softmax_grad - backward_op : logcumsumexp_grad forward : logcumsumexp(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out) infer_meta : func : UnchangedInferMeta param : [x] args : (Tensor x, Tensor out, Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse) output : Tensor(x_grad) kernel : func : logcumsumexp_grad - backward_op : logsumexp_grad forward : logsumexp(Tensor x, int64_t[] axis, bool keepdim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keepdim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : logsumexp_grad - backward_op : lu_grad forward : lu (Tensor x, bool pivot) -> Tensor(out), Tensor(pivots), Tensor(infos) args : (Tensor x, Tensor out, Tensor pivots, Tensor out_grad, bool pivot) output : Tensor(x_grad) infer_meta : func : LUGradInferMeta kernel : func : lu_grad - backward_op : margin_cross_entropy_grad forward : margin_cross_entropy (Tensor logits, Tensor label, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale) -> Tensor(softmax), Tensor(loss) args : (Tensor logits, Tensor label, Tensor softmax, Tensor loss_grad, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale) output : Tensor(logits_grad) infer_meta : func : MarginCrossEntropyGradInferMeta kernel : func : margin_cross_entropy_grad data_type : softmax inplace : (softmax -> logits_grad) - backward_op : matmul_double_grad forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, y, grad_out] kernel : func : matmul_double_grad backward : matmul_triple_grad optional : grad_x_grad, grad_y_grad - backward_op : matmul_grad forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : matmul_grad backward : matmul_double_grad - backward_op : matmul_triple_grad forward : matmul_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out) args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad) infer_meta : func : GeneralQuinaryGradInferMeta param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y] kernel : func : matmul_triple_grad optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_x_grad, grad_y_grad, grad_grad_out_grad - backward_op : max_grad forward: max (Tensor x, IntArray axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : max_grad - backward_op : max_pool2d_with_index_grad forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask) args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) output : Tensor(x_grad) infer_meta : func : MaxPoolWithIndexGradInferMeta kernel : func : max_pool2d_with_index_grad - backward_op : max_pool3d_with_index_grad forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask) args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) output : Tensor(x_grad) infer_meta : func : MaxPoolWithIndexGradInferMeta kernel : func : max_pool3d_with_index_grad - backward_op : maximum_grad forward : maximum(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : maximum_grad - backward_op : mean_all_grad forward : mean_all(Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : mean_all_grad - backward_op : mean_double_grad forward: mean_grad (Tensor x, Tensor grad_out, IntArray axis={}, bool keepdim=false, bool reduce_all = false) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false) output : Tensor(grad_out_grad) invoke : mean(grad_x_grad, axis, keepdim) - backward_op : mean_grad forward: mean (Tensor x, IntArray axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : mean_grad backward : mean_double_grad no_need_buffer : x - backward_op : meshgrid_grad forward : meshgrid (Tensor[] inputs) -> Tensor[](outputs) args : (Tensor[] inputs, Tensor[] outputs_grad) output : Tensor[](inputs_grad){inputs.size()} infer_meta : func : MeshgridGradInferMeta kernel : func : meshgrid_grad - backward_op : min_grad forward: min (Tensor x, IntArray axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : min_grad - backward_op : minimum_grad forward : minimum(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : minimum_grad - backward_op : mish_grad forward : mish (Tensor x, float threshold) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : mish_grad inplace : (out_grad -> x_grad) - backward_op : multi_dot_grad forward : multi_dot (Tensor[] x) -> Tensor(out) args : (Tensor[] x, Tensor out_grad) output : Tensor[](x_grad) {x.size()} infer_meta : func : MultiDotGradInferMeta kernel : func : multi_dot_grad - backward_op : multiplex_grad forward : multiplex (Tensor[] inputs, Tensor index) -> Tensor(out) args : (Tensor[] inputs, Tensor index, Tensor out_grad) output : Tensor[](inputs_grad){inputs.size()} infer_meta : func : MultiplexGradInferMeta param : [index, out_grad] kernel : func : multiplex_grad param : [index, out_grad] - backward_op : multiply_double_grad forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, y, grad_out] kernel : func : multiply_double_grad optional : grad_x_grad, grad_y_grad backward : multiply_triple_grad inplace : (grad_x_grad -> grad_out_grad) - backward_op : multiply_grad forward : multiply (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : multiply_grad backward : multiply_double_grad - backward_op : multiply_triple_grad forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out) args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad) infer_meta : func : GeneralQuinaryGradInferMeta param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y] kernel : func : multiply_triple_grad optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_x_grad, grad_y_grad, grad_grad_out_grad - backward_op : nearest_interp_grad forward : nearest_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] optional: out_size, size_tensor, scale_tensor kernel : func : nearest_interp_grad data_type : output_grad - backward_op : norm_grad forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm) args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : norm_grad - backward_op : p_norm_grad forward : p_norm(Tensor x, float porder, int axis, float epsilon, bool keepdim, bool asvector=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, float porder, int axis, float epsilon, bool keepdim, bool asvector) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : p_norm_grad - backward_op : pad3d_double_grad forward : pad3d_grad(Tensor x, Tensor grad_out, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray paddings, str mode, float pad_value, str data_format) output : Tensor(grad_out_grad) infer_meta : func : Pad3dInferMeta kernel : func : pad3d - backward_op : pad3d_grad forward : pad3d(Tensor x, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray paddings, str mode, float pad_value, str data_format) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pad3d_grad no_need_buffer : x backward : pad3d_double_grad - backward_op : pad_double_grad forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, Scalar pad_value) -> Tensor(grad_x) args : (Tensor grad_x_grad, int[] paddings, Scalar pad_value) output : Tensor(grad_out_grad) infer_meta : func : PadInferMeta kernel : func : pad - backward_op : pad_grad forward : pad(Tensor x, int[] paddings, Scalar pad_value) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] paddings, Scalar pad_value) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pad_grad param: [out_grad, paddings, pad_value] no_need_buffer : x backward : pad_double_grad - backward_op : pool2d_double_grad forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(grad_x) args : (Tensor x, Tensor grad_x_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(grad_out_grad) infer_meta : func : Pool2DInferMeta param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm] kernel : func : pool2d_double_grad param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm] no_need_buffer : x - backward_op : pool2d_grad forward : pool2d(Tensor x, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pool2d_grad param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm] backward : pool2d_double_grad - backward_op : pool3d_grad forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pool3d_grad param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm] - backward_op : pow_double_grad forward : pow_grad(Tensor x, Tensor grad_out, Scalar y) -> Tensor(grad_x) args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, Scalar y) output : Tensor(x_grad), Tensor(grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, grad_out] kernel : func : pow_double_grad backward : pow_triple_grad inplace : (grad_x_grad -> x_grad) - backward_op : pow_grad forward : pow(Tensor x, Scalar y) -> Tensor(out) args : (Tensor x, Tensor out_grad, Scalar y=-1) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pow_grad backward: pow_double_grad inplace : (out_grad -> x_grad) - backward_op : pow_triple_grad forward : pow_double_grad(Tensor x, Tensor grad_out, Tensor grad_grad_x, Scalar y) -> Tensor(grad_x), Tensor(grad_grad_out) args : (Tensor x, Tensor grad_out, Tensor grad_grad_x, Tensor grad_x_grad, Tensor grad_grad_out_grad, Scalar y) output : Tensor(x_grad), Tensor(grad_out_grad), Tensor(grad_grad_x_grad) infer_meta : func : GeneralTernaryGradInferMeta param: [x, grad_out, grad_grad_x] kernel : func : pow_triple_grad - backward_op : prelu_grad forward : prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out) args : (Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode) output : Tensor(x_grad), Tensor(alpha_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, alpha] kernel : func : prelu_grad - backward_op : prod_grad forward : prod (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, IntArray dims, bool keep_dim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : prod_grad - backward_op : psroi_pool_grad forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out) args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : psroi_pool_grad data_type : x optional : boxes_num - backward_op : relu6_grad forward : relu6 (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad, float threshold = 6) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : relu6_grad inplace : (out_grad -> x_grad) - backward_op : repeat_interleave_grad forward : repeat_interleave(Tensor x, int repeats, int axis) -> Tensor(out) args : (Tensor x, Tensor out_grad, int repeats, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : repeat_interleave_grad - backward_op : repeat_interleave_with_tensor_index_grad forward : repeat_interleave_with_tensor_index(Tensor x, Tensor repeats, int axis) -> Tensor(out) args : (Tensor x, Tensor repeats, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : repeat_interleave_with_tensor_index_grad data_type : x - backward_op : reshape_double_grad forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x) args : (Tensor grad_out, Tensor grad_x_grad) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_out] kernel : func : reshape_double_grad no_need_buffer : grad_out inplace : (grad_x_grad -> grad_out_grad) - backward_op : reshape_grad forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape) args : (Tensor xshape, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param : [xshape] kernel : func : reshape_grad param : [out_grad] data_type: out_grad backend: out_grad layout: out_grad backward : reshape_double_grad inplace : (out_grad -> x_grad) - backward_op : reverse_grad forward : reverse (Tensor x, IntArray axis) -> Tensor(out) args : (Tensor out_grad, IntArray axis) output : Tensor(x_grad) invoke : reverse(out_grad, axis) - backward_op : rnn_grad forward : rnn (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor dropout_state_in, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) -> Tensor(out), Tensor(dropout_state_out), Tensor[](state), Tensor(reserve) args : (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor out, Tensor dropout_state_out, Tensor reserve, Tensor out_grad, Tensor[] state_grad, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) output : Tensor(x_grad), Tensor[](pre_state_grad){pre_state.size()}, Tensor[](weight_list_grad){weight_list.size()} infer_meta : func : RnnGradInferMeta param : [x, pre_state, weight_list] kernel : func : rnn_grad data_type: out_grad optional : sequence_length - backward_op : roi_align_grad forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out) args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : roi_align_grad data_type : boxes no_need_buffer : x optional : boxes_num - backward_op : roi_pool_grad forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max) args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : roi_pool_grad data_type : x optional : boxes_num - backward_op : scale_grad forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out) args : (Tensor out_grad, Scalar scale=1.0, bool bias_after_scale=true) output : Tensor(x_grad) invoke : scale(out_grad, scale, 0.0, bias_after_scale) - backward_op : segment_pool_grad forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids) args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : segment_pool_grad data_type : x optional : summed_ids - backward_op : send_u_recv_grad forward : send_u_recv (Tensor x, Tensor src_index, Tensor dst_index, str reduce_op = "SUM", IntArray out_size = {0}) -> Tensor(out), Tensor(dst_count) args : (Tensor x, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str reduce_op = "SUM") output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : send_u_recv_grad data_type : out_grad optional: out, dst_count - backward_op : send_ue_recv_grad forward : send_ue_recv (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, str message_op, str reduce_op, IntArray out_size) -> Tensor(out), Tensor(dst_count) args : (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str message_op, str reduce_op) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : send_ue_recv_grad data_type : out_grad optional: out, dst_count - backward_op : sigmoid_cross_entropy_with_logits_grad forward : sigmoid_cross_entropy_with_logits (Tensor x, Tensor label, bool normalize, int ignore_index) -> Tensor(out) args : (Tensor x, Tensor label, Tensor out_grad, bool normalize, int ignore_index) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sigmoid_cross_entropy_with_logits_grad inplace : (out_grad -> x_grad) - backward_op : sign_grad forward : sign (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) invoke : scale(out_grad, 0.0, 0.0, true) - backward_op : slice_double_grad forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input) args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) output : Tensor(grad_out_grad) invoke : slice(grad_input_grad, axes, starts, ends, infer_flags, decrease_axis) - backward_op : slice_grad forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out) args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) output : Tensor(input_grad) infer_meta : func : UnchangedInferMeta param : [input] kernel : func : slice_grad backward : slice_double_grad no_need_buffer : input - backward_op : slogdet_grad forward : slogdet (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : slogdet_grad - backward_op : softmax_grad forward : softmax (Tensor x, int axis) -> Tensor(out) args : (Tensor out, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : softmax_grad - backward_op : spectral_norm_grad forward : spectral_norm (Tensor weight, Tensor u, Tensor v, int dim, int power_iters, float eps) -> Tensor(out) args : (Tensor weight, Tensor u, Tensor v, Tensor out_grad, int dim, int power_iters, float eps) output : Tensor(weight_grad) infer_meta : func : SpectralNormGradInferMeta kernel : func : spectral_norm_grad data_type : out_grad - backward_op : split_grad forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out) args : (Tensor[] out_grad, Scalar axis = -1) output : Tensor(x_grad) invoke : concat( out_grad, axis) - backward_op : split_with_num_grad forward : split_with_num (Tensor x, int num, Scalar axis) -> Tensor[](out) args : (Tensor[] out_grad, Scalar axis = -1) output : Tensor(x_grad) invoke : concat( out_grad, axis) - backward_op : squared_l2_norm_grad forward : squared_l2_norm(Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : squared_l2_norm_grad - backward_op : stack_grad forward : stack (Tensor[] x, int axis) -> Tensor(out) args : (Tensor[] x, Tensor out_grad, int axis) output : Tensor[](x_grad){x.size()} infer_meta : func : StackGradInferMeta param: [out_grad, axis] kernel : func : stack_grad param : [out_grad, axis] no_need_buffer : x - backward_op : strided_slice_grad forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : strided_slice_grad no_need_buffer : x - backward_op : subtract_double_grad forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_out] kernel : func : subtract_double_grad optional : grad_x_grad, grad_y_grad no_need_buffer : y, grad_out inplace : (grad_x_grad -> grad_out_grad) - backward_op : subtract_grad forward : subtract (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : subtract_grad no_need_buffer : x, y backward : subtract_double_grad inplace : (out_grad -> x_grad) - backward_op : sum_double_grad forward : sum_grad (Tensor x, Tensor grad_out, IntArray axis, bool keepdim, bool reduce_all=false) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false) output : Tensor(grad_out_grad) invoke : sum(grad_x_grad, axis, grad_x_grad.dtype(), keepdim) - backward_op : sum_grad forward : sum (Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray axis, bool keepdim, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sum_grad no_need_buffer : x backward : sum_double_grad - backward_op : swish_grad forward : swish (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad, float bete=1.0) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : swish_grad inplace : (out_grad -> x_grad) - backward_op : sync_batch_norm_grad forward : sync_batch_norm_ (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space) args : (Tensor x, Tensor scale, Tensor bias, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, bias] kernel : func : sync_batch_norm_grad data_type : out_grad optional : reserve_space - backward_op : temporal_shift_grad forward : temporal_shift(Tensor x, int seg_num, float shift_ratio, str data_format_str) -> Tensor(out) args : (Tensor out_grad, int seg_num, float shift_ratio, str data_format_str) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : temporal_shift_grad - backward_op : tile_double_grad forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray repeat_times) output : Tensor(grad_out_grad) invoke : tile(grad_x_grad, repeat_times) - backward_op : tile_grad forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray repeat_times) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : tile_grad no_need_buffer : x backward : tile_double_grad - backward_op : transpose_double_grad forward : transpose_grad (Tensor grad_out, int[] perm) -> Tensor(grad_x) args : (Tensor grad_x_grad, int[] perm) output : Tensor(grad_out_grad) invoke : transpose(grad_x_grad, perm) - backward_op : transpose_grad forward : transpose (Tensor x, int[] perm) -> Tensor(out) args : (Tensor out_grad, int[] perm) output : Tensor(x_grad) infer_meta : func : TransposeGradInferMeta param : [out_grad, perm] kernel : func : transpose_grad backward : transpose_double_grad - backward_op : triangular_solve_grad forward : triangular_solve (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper, bool tranpose, bool unitriangular) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : triangular_solve_grad - backward_op : tril_grad forward : tril(Tensor x, int diagonal) -> Tensor(out) args : (Tensor out_grad, int diagonal) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : tril_grad - backward_op : trilinear_interp_grad forward : trilinear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] optional: out_size, size_tensor, scale_tensor kernel : func : trilinear_interp_grad data_type : output_grad - backward_op : triu_grad forward : triu(Tensor x, int diagonal) -> Tensor(out) args : (Tensor out_grad, int diagonal) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : triu_grad - backward_op : unbind_grad forward : unbind (Tensor input, int axis) -> Tensor[](out) args : (Tensor[] out_grad, int axis) output : Tensor(input_grad) invoke : stack(out_grad, axis) - backward_op : uniform_inplace_grad forward : uniform_inplace(Tensor x, float min, float max, int seed, int diag_num, int diag_step, float diag_val) -> Tensor(out) args : (Tensor out_grad, float min, float max, int seed, int diag_num, int diag_step, float diag_val) output : Tensor(x_grad) infer_meta : func : UniformRandomInplaceGradInferMeta kernel : func : uniform_inplace_grad inplace : (out_grad -> x_grad) - backward_op : warpctc_grad forward : warpctc (Tensor logits, Tensor label, Tensor logits_length, Tensor labels_length, int blank, bool norm_by_times) -> Tensor(loss), Tensor(warpctcgrad) args : (Tensor logits, Tensor logits_length, Tensor warpctcgrad, Tensor loss_grad, int blank, bool norm_by_times) output : Tensor(logits_grad) infer_meta : func : UnchangedInferMeta param : [logits] kernel : func : warpctc_grad optional : logits_length no_need_buffer : logits - backward_op : yolo_loss_grad forward : yolo_loss(Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0) -> Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask) args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, Tensor objectness_mask, Tensor gt_match_mask, Tensor loss_grad, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0) output : Tensor(x_grad), Tensor(gt_box_grad), Tensor(gt_label_grad), Tensor(gt_score_grad) infer_meta : func : YoloLossGradInferMeta kernel : func : yolo_loss_grad optional : gt_score - backward_op: unpool3d_grad forward: unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) -> Tensor(out) args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) output: Tensor(x_grad) infer_meta: func: UnchangedInferMeta param : [x] kernel: func: unpool3d_grad data_type: x - backward_op: unpool_grad forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format) -> Tensor(out) args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format) output: Tensor(x_grad) infer_meta: func: UnchangedInferMeta param : [x] kernel: func: unpool_grad data_type: x