#start_epoch(int): The epoch to insert quantization operators. default: 0 # #end_epoch(int): The epoch to save inference model. default: 0 # #float_model_save_path(str): The path to save model with float weights. # None means it doesn't save float model. default: None. # #mobile_model_save_path(str): The path to save model for paddle-mobile execution. # None means it doesn't save mobile model. default: None. # #int8_model_save_path(str): The path to save model with int8_t weight. # None means it doesn't save int8 model. default: None. # #activation_bits(int): quantization bit number for activation. default: 8. # #weight_bits(int): quantization bit number for weights. The bias is not quantized. # default: 8. # #activation_quantize_type(str): quantization type for activation, # now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'. # If use 'abs_max' mode, the quantization scale will be calculated # dynamically each step in both training and testing period. If use # 'range_abs_max', a static quantization scale will be calculated # during training and used in inference. # #save_in_nodes(list): A list of variable names used to prune graph # for saving inference model. # #save_out_nodes(list): A list of variable names used to prune graph # for saving inference model. version: 1.0 strategies: quantization_strategy: class: 'QuantizationStrategy' start_epoch: 0 end_epoch: 0 float_model_save_path: './output/float' mobile_model_save_path: './output/mobile' int8_model_save_path: './output/int8' weight_bits: 8 activation_bits: 8 weight_quantize_type: 'abs_max' activation_quantize_type: 'abs_max' save_in_nodes: ['image'] save_out_nodes: ['quan.tmp_2'] compressor: epoch: 2 checkpoint_path: './checkpoints_quan_2/' strategies: - quantization_strategy