/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/mkldnn_reuse.h" #include "paddle/phi/kernels/funcs/pooling.h" namespace paddle { namespace operators { using dnnl::memory; using dnnl::pooling_backward; using dnnl::pooling_forward; using dnnl::primitive; using dnnl::reorder; using dnnl::stream; using phi::DataLayout; using platform::to_void_cast; template class PoolingMKLDNNHandler : public platform::MKLDNNHandlerNoCachingT { public: PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx, const dnnl::engine mkldnn_engine, const phi::DenseTensor* input, phi::DenseTensor* output) : platform::MKLDNNHandlerNoCachingT( mkldnn_engine, ctx.GetPlace()) { const std::string pooling_type = ctx.Attr("pooling_type"); std::vector ksize_temp = ctx.Attr>("ksize"); std::vector ksize(begin(ksize_temp), end(ksize_temp)); std::vector strides_temp = ctx.Attr>("strides"); std::vector strides(begin(strides_temp), end(strides_temp)); std::vector paddings_temp = ctx.Attr>("paddings"); std::vector paddings(begin(paddings_temp), end(paddings_temp)); const bool global_pooling = ctx.Attr("global_pooling"); const std::string padding_algorithm = ctx.Attr("padding_algorithm"); // Only 2D pooling is supported now PADDLE_ENFORCE_EQ( ksize.size(), 2, platform::errors::InvalidArgument( "The ksize must be 2D, i.e. 2D pooling, but received %dD.", ksize.size())); PADDLE_ENFORCE_EQ( pooling_type == "max" || pooling_type == "avg", true, platform::errors::InvalidArgument( "The pooling_type must be 'max' or 'avg', but received %s.", pooling_type)); PADDLE_ENFORCE_EQ( input->dims().size(), 4, platform::errors::InvalidArgument( "Input dim must be with 4, i.e. NCHW, but received %d.", input->dims().size())); const auto input_dims = input->dims(); framework::DDim data_dims = phi::slice_ddim(input_dims, 2, input_dims.size()); if (global_pooling) { phi::funcs::UpdateKernelSize(&ksize, data_dims); } phi::funcs::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm, data_dims, strides, ksize); const auto is_test = ctx.Attr("is_test"); const bool ceil_mode = ctx.Attr("ceil_mode"); const auto exclude_padding = ctx.Attr("exclusive"); auto mkldnn_paddings = platform::ToMkldnnPadding(paddings); const auto dt = framework::ToMKLDNNDataType( framework::TransToProtoVarType(input->dtype())); const auto src_tz = phi::vectorize(input->dims()); const auto dst_tz = phi::vectorize(output->dims()); const auto dst_md = platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any); if (ceil_mode) { CorrectOutputSize( src_tz, dst_tz, ksize, paddings, strides, mkldnn_paddings[1]); } ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides); this->AcquireForwardPrimitiveDescriptor( is_test ? dnnl::prop_kind::forward_inference : dnnl::prop_kind::forward_training, pooling_type == "max" ? dnnl::algorithm::pooling_max : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding : dnnl::algorithm::pooling_avg_include_padding), input->mem_desc(), dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]); } PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx, const dnnl::engine mkldnn_engine, const phi::DenseTensor* in_x, const phi::DenseTensor* out_grad, phi::DenseTensor* in_x_grad) : platform::MKLDNNHandlerNoCachingT( mkldnn_engine, ctx.GetPlace()) { PADDLE_ENFORCE_EQ( ctx.Attr("is_test"), false, platform::errors::InvalidArgument( "is_test attribute should be set to False in training phase.")); std::string pooling_type = ctx.Attr("pooling_type"); std::vector ksize_temp = ctx.Attr>("ksize"); std::vector ksize(begin(ksize_temp), end(ksize_temp)); std::vector strides_temp = ctx.Attr>("strides"); std::vector strides(begin(strides_temp), end(strides_temp)); std::vector paddings_temp = ctx.Attr>("paddings"); std::vector paddings(begin(paddings_temp), end(paddings_temp)); bool global_pooling = ctx.Attr("global_pooling"); std::string padding_algorithm = ctx.Attr("padding_algorithm"); auto in_x_dims = in_x->dims(); framework::DDim data_dims = phi::slice_ddim(in_x_dims, 2, in_x_dims.size()); if (global_pooling) { phi::funcs::UpdateKernelSize(&ksize, data_dims); } phi::funcs::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm, data_dims, strides, ksize); auto src_tz = phi::vectorize(in_x->dims()); auto diff_src_tz = phi::vectorize(in_x_grad->dims()); auto diff_dst_tz = phi::vectorize(out_grad->dims()); const auto dt = framework::ToMKLDNNDataType( framework::TransToProtoVarType(in_x->dtype())); auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, MKLDNNMemoryFormat::any); auto diff_src_md = dnnl::memory::desc( diff_src_tz, platform::MKLDNNGetDataType(), MKLDNNMemoryFormat::any); auto mkldnn_paddings = platform::ToMkldnnPadding(paddings); const bool ceil_mode = ctx.Attr("ceil_mode"); if (ceil_mode) { CorrectOutputSize( src_tz, diff_dst_tz, ksize, paddings, strides, mkldnn_paddings[1]); } ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides); const auto exclude_padding = ctx.Attr("exclusive"); this->AcquireForwardPrimitiveDescriptor( dnnl::prop_kind::forward_training, pooling_type == "max" ? dnnl::algorithm::pooling_max : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding : dnnl::algorithm::pooling_avg_include_padding), in_x->mem_desc(), dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]); this->AcquireBackwardPrimitiveDescriptor( pooling_type == "max" ? dnnl::algorithm::pooling_max : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding : dnnl::algorithm::pooling_avg_include_padding), diff_src_md, out_grad->mem_desc(), strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]); } std::shared_ptr AcquireWorkspaceMemory( const platform::MKLDNNDeviceContext& dev_ctx, const std::string& unique_name) { dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc(); // Pooling Workspace has to be passed to Grad op that // may be executed by diffrent thread, hence // for that one we use key that does not contain TID std::string workspace_key = platform::CreateKey(dev_ctx, workspace_md.dims(), workspace_md.data_type(), unique_name, "@wrk"); auto mem_p = std::static_pointer_cast(dev_ctx.GetBlob(workspace_key)); if (mem_p == nullptr) { static std::mutex acquire_barrier; std::lock_guard block_threads_until_finish_this_job( acquire_barrier); mem_p = std::static_pointer_cast( dev_ctx.GetBlob(workspace_key)); if (mem_p == nullptr) { mem_p = std::make_shared(workspace_md, this->engine_); dev_ctx.SetBlob(workspace_key, mem_p); } } return mem_p; } static void ComputeAdaptivePoolParameters( const paddle::framework::ExecutionContext& ctx, const std::vector& src_tz, std::vector* ksize, std::vector* strides) { if (ctx.Attr("adaptive")) { // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling auto IH = static_cast(src_tz[src_tz.size() - 2]); auto IW = static_cast(src_tz[src_tz.size() - 1]); auto OH = static_cast(ksize->at(0)); auto OW = static_cast(ksize->at(1)); strides->at(0) = static_cast(floor((IH * 2.0) / OH) - floor(IH / OH)); strides->at(1) = static_cast(floor((IW * 2.0) / OW) - floor(IW / OW)); ksize->at(0) = static_cast(ceil((IH * 2.0) / OH) - floor(IH / OH)); ksize->at(1) = static_cast(ceil((IW * 2.0) / OW) - floor(IW / OW)); } } private: static inline int ComputeCeiledOutput(int input_size, int kernel_size, int padding, int stride) { return (input_size - kernel_size + 2 * padding) / stride + 1; } static inline void CorrectOutputSize( const std::vector& src_tz, const std::vector& dst_tz, const std::vector& kernel_size, const std::vector& paddings, const std::vector& strides, std::vector& right_bot_padding) { // NOLINT for (size_t i = 0; i < right_bot_padding.size(); i++) { int desired_size = ComputeCeiledOutput( src_tz[i + 2], kernel_size[i], paddings[i], strides[i]); if (desired_size != dst_tz[i + 2]) { right_bot_padding[i] += strides[i] - 1; } } } }; template class PoolMKLDNNOpKernel : public paddle::framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true, paddle::platform::errors::PreconditionNotMet( "Operator DNNL Pool must use CPUPlace")); auto& dev_ctx = ctx.template device_context(); const phi::DenseTensor* input = ctx.Input("X"); phi::DenseTensor* output = ctx.Output("Out"); PoolingMKLDNNHandler handler(ctx, dev_ctx.GetEngine(), input, output); auto src_memory = handler.AcquireSrcMemory(input); auto dst_memory = handler.AcquireDstMemory(output); auto pool_p = handler.AcquireForwardPrimitive(); auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); if ((ctx.Attr("is_test") == false) && (ctx.Attr("pooling_type") == "max")) { // Training auto workspace_memory = handler.AcquireWorkspaceMemory(dev_ctx, ctx.OutputName("Out")); pool_p->execute(astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}, {DNNL_ARG_WORKSPACE, *workspace_memory}}); } else { // Inference pool_p->execute( astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}}); } astream.wait(); output->set_mem_desc(dst_memory->get_desc()); } }; template class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true, paddle::platform::errors::PreconditionNotMet( "Operator DNNL PoolGrad must use CPUPlace")); const phi::DenseTensor* in_x = ctx.Input("X"); const phi::DenseTensor* out_grad = ctx.Input(framework::GradVarName("Out")); phi::DenseTensor* in_x_grad = ctx.Output(framework::GradVarName("X")); auto& dev_ctx = ctx.template device_context(); PoolingMKLDNNHandler handler( ctx, dev_ctx.GetEngine(), in_x, out_grad, in_x_grad); auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad); auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad); auto pool_bwd_p = handler.AcquireBackwardPrimitive(); auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); if (ctx.Attr("pooling_type") == "max") { // Max - pooling needs Workspace auto workspace_memory = handler.AcquireWorkspaceMemory(dev_ctx, ctx.InputName("Out")); pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory}, {DNNL_ARG_DIFF_DST, *diff_dst_memory}, {DNNL_ARG_WORKSPACE, *workspace_memory}}); } else { // Average Pooling pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory}, {DNNL_ARG_DIFF_DST, *diff_dst_memory}}); } astream.wait(); in_x_grad->set_mem_desc(diff_src_memory->get_desc()); } // Compute() }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace, ops::PoolMKLDNNOpKernel, ops::PoolMKLDNNOpKernel, ops::PoolMKLDNNOpKernel, ops::PoolMKLDNNOpKernel); REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace, ops::PoolMKLDNNGradOpKernel, ops::PoolMKLDNNGradOpKernel);